API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.awt.geom. AffineTransform View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904

/*
 * @(#)AffineTransform.java	1.77 06/03/09
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.awt.geom;

import java.awt.Shape;

/**
 * The <code>AffineTransform</code> class represents a 2D affine transform
 * that performs a linear mapping from 2D coordinates to other 2D
 * coordinates that preserves the "straightness" and
 * "parallelness" of lines.  Affine transformations can be constructed
 * using sequences of translations, scales, flips, rotations, and shears.
 * <p>
 * Such a coordinate transformation can be represented by a 3 row by
 * 3 column matrix with an implied last row of [ 0 0 1 ].  This matrix 
 * transforms source coordinates {@code (x,y)} into
 * destination coordinates {@code (x',y')} by considering
 * them to be a column vector and multiplying the coordinate vector
 * by the matrix according to the following process:
 * <pre>
 *	[ x']   [  m00  m01  m02  ] [ x ]   [ m00x + m01y + m02 ]
 *	[ y'] = [  m10  m11  m12  ] [ y ] = [ m10x + m11y + m12 ]
 *	[ 1 ]   [   0    0    1   ] [ 1 ]   [         1         ]
 * </pre>
 * <p>
 * <a name="quadrantapproximation"><h4>Handling 90-Degree Rotations</h4></a>
 * <p>
 * In some variations of the <code>rotate</code> methods in the
 * <code>AffineTransform</code> class, a double-precision argument
 * specifies the angle of rotation in radians.
 * These methods have special handling for rotations of approximately
 * 90 degrees (including multiples such as 180, 270, and 360 degrees),
 * so that the common case of quadrant rotation is handled more
 * efficiently.
 * This special handling can cause angles very close to multiples of
 * 90 degrees to be treated as if they were exact multiples of
 * 90 degrees.
 * For small multiples of 90 degrees the range of angles treated
 * as a quadrant rotation is approximately 0.00000121 degrees wide.
 * This section explains why such special care is needed and how
 * it is implemented.
 * <p>
 * Since 90 degrees is represented as <code>PI/2</code> in radians,
 * and since PI is a transcendental (and therefore irrational) number,
 * it is not possible to exactly represent a multiple of 90 degrees as
 * an exact double precision value measured in radians.
 * As a result it is theoretically impossible to describe quadrant
 * rotations (90, 180, 270 or 360 degrees) using these values.
 * Double precision floating point values can get very close to
 * non-zero multiples of <code>PI/2</code> but never close enough
 * for the sine or cosine to be exactly 0.0, 1.0 or -1.0.
 * The implementations of <code>Math.sin()</code> and
 * <code>Math.cos()</code> correspondingly never return 0.0
 * for any case other than <code>Math.sin(0.0)</code>.
 * These same implementations do, however, return exactly 1.0 and
 * -1.0 for some range of numbers around each multiple of 90
 * degrees since the correct answer is so close to 1.0 or -1.0 that
 * the double precision significand cannot represent the difference
 * as accurately as it can for numbers that are near 0.0.
 * <p>
 * The net result of these issues is that if the
 * <code>Math.sin()</code> and <code>Math.cos()</code> methods
 * are used to directly generate the values for the matrix modifications
 * during these radian-based rotation operations then the resulting
 * transform is never strictly classifiable as a quadrant rotation
 * even for a simple case like <code>rotate(Math.PI/2.0)</code>,
 * due to minor variations in the matrix caused by the non-0.0 values
 * obtained for the sine and cosine.
 * If these transforms are not classified as quadrant rotations then
 * subsequent code which attempts to optimize further operations based
 * upon the type of the transform will be relegated to its most general
 * implementation.
 * <p>
 * Because quadrant rotations are fairly common,
 * this class should handle these cases reasonably quickly, both in
 * applying the rotations to the transform and in applying the resulting
 * transform to the coordinates.
 * To facilitate this optimal handling, the methods which take an angle
 * of rotation measured in radians attempt to detect angles that are
 * intended to be quadrant rotations and treat them as such.
 * These methods therefore treat an angle <em>theta</em> as a quadrant
 * rotation if either <code>Math.sin(<em>theta</em>)</code> or
 * <code>Math.cos(<em>theta</em>)</code> returns exactly 1.0 or -1.0.
 * As a rule of thumb, this property holds true for a range of
 * approximately 0.0000000211 radians (or 0.00000121 degrees) around
 * small multiples of <code>Math.PI/2.0</code>.
 *
 * @version 1.77, 03/09/06
 * @author Jim Graham
 * @since 1.2
 */
public class AffineTransform implements Cloneable, java.io.Serializable {

    /*
     * This constant is only useful for the cached type field.
     * It indicates that the type has been decached and must be recalculated.
     */
    private static final int TYPE_UNKNOWN = -1;

    /**
     * This constant indicates that the transform defined by this object
     * is an identity transform.
     * An identity transform is one in which the output coordinates are
     * always the same as the input coordinates.
     * If this transform is anything other than the identity transform,
     * the type will either be the constant GENERAL_TRANSFORM or a
     * combination of the appropriate flag bits for the various coordinate
     * conversions that this transform performs.
     * @see #TYPE_TRANSLATION
     * @see #TYPE_UNIFORM_SCALE
     * @see #TYPE_GENERAL_SCALE
     * @see #TYPE_FLIP
     * @see #TYPE_QUADRANT_ROTATION
     * @see #TYPE_GENERAL_ROTATION
     * @see #TYPE_GENERAL_TRANSFORM
     * @see #getType
     * @since 1.2
     */
    public static final int TYPE_IDENTITY = 0;

    /**
     * This flag bit indicates that the transform defined by this object
     * performs a translation in addition to the conversions indicated
     * by other flag bits.
     * A translation moves the coordinates by a constant amount in x
     * and y without changing the length or angle of vectors.
     * @see #TYPE_IDENTITY
     * @see #TYPE_UNIFORM_SCALE
     * @see #TYPE_GENERAL_SCALE
     * @see #TYPE_FLIP
     * @see #TYPE_QUADRANT_ROTATION
     * @see #TYPE_GENERAL_ROTATION
     * @see #TYPE_GENERAL_TRANSFORM
     * @see #getType
     * @since 1.2
     */
    public static final int TYPE_TRANSLATION = 1;

    /**
     * This flag bit indicates that the transform defined by this object
     * performs a uniform scale in addition to the conversions indicated
     * by other flag bits.
     * A uniform scale multiplies the length of vectors by the same amount
     * in both the x and y directions without changing the angle between
     * vectors.
     * This flag bit is mutually exclusive with the TYPE_GENERAL_SCALE flag.
     * @see #TYPE_IDENTITY
     * @see #TYPE_TRANSLATION
     * @see #TYPE_GENERAL_SCALE
     * @see #TYPE_FLIP
     * @see #TYPE_QUADRANT_ROTATION
     * @see #TYPE_GENERAL_ROTATION
     * @see #TYPE_GENERAL_TRANSFORM
     * @see #getType
     * @since 1.2
     */
    public static final int TYPE_UNIFORM_SCALE = 2;

    /**
     * This flag bit indicates that the transform defined by this object
     * performs a general scale in addition to the conversions indicated
     * by other flag bits.
     * A general scale multiplies the length of vectors by different
     * amounts in the x and y directions without changing the angle
     * between perpendicular vectors.
     * This flag bit is mutually exclusive with the TYPE_UNIFORM_SCALE flag.
     * @see #TYPE_IDENTITY
     * @see #TYPE_TRANSLATION
     * @see #TYPE_UNIFORM_SCALE
     * @see #TYPE_FLIP
     * @see #TYPE_QUADRANT_ROTATION
     * @see #TYPE_GENERAL_ROTATION
     * @see #TYPE_GENERAL_TRANSFORM
     * @see #getType
     * @since 1.2
     */
    public static final int TYPE_GENERAL_SCALE = 4;

    /**
     * This constant is a bit mask for any of the scale flag bits.
     * @see #TYPE_UNIFORM_SCALE
     * @see #TYPE_GENERAL_SCALE
     * @since 1.2
     */
    public static final int TYPE_MASK_SCALE = (TYPE_UNIFORM_SCALE |
					       TYPE_GENERAL_SCALE);

    /**
     * This flag bit indicates that the transform defined by this object
     * performs a mirror image flip about some axis which changes the
     * normally right handed coordinate system into a left handed
     * system in addition to the conversions indicated by other flag bits.
     * A right handed coordinate system is one where the positive X
     * axis rotates counterclockwise to overlay the positive Y axis
     * similar to the direction that the fingers on your right hand
     * curl when you stare end on at your thumb.
     * A left handed coordinate system is one where the positive X
     * axis rotates clockwise to overlay the positive Y axis similar
     * to the direction that the fingers on your left hand curl.
     * There is no mathematical way to determine the angle of the
     * original flipping or mirroring transformation since all angles
     * of flip are identical given an appropriate adjusting rotation.
     * @see #TYPE_IDENTITY
     * @see #TYPE_TRANSLATION
     * @see #TYPE_UNIFORM_SCALE
     * @see #TYPE_GENERAL_SCALE
     * @see #TYPE_QUADRANT_ROTATION
     * @see #TYPE_GENERAL_ROTATION
     * @see #TYPE_GENERAL_TRANSFORM
     * @see #getType
     * @since 1.2
     */
    public static final int TYPE_FLIP = 64;
    /* NOTE: TYPE_FLIP was added after GENERAL_TRANSFORM was in public
     * circulation and the flag bits could no longer be conveniently
     * renumbered without introducing binary incompatibility in outside
     * code.
     */

    /**
     * This flag bit indicates that the transform defined by this object
     * performs a quadrant rotation by some multiple of 90 degrees in
     * addition to the conversions indicated by other flag bits.
     * A rotation changes the angles of vectors by the same amount
     * regardless of the original direction of the vector and without
     * changing the length of the vector.
     * This flag bit is mutually exclusive with the TYPE_GENERAL_ROTATION flag.
     * @see #TYPE_IDENTITY
     * @see #TYPE_TRANSLATION
     * @see #TYPE_UNIFORM_SCALE
     * @see #TYPE_GENERAL_SCALE
     * @see #TYPE_FLIP
     * @see #TYPE_GENERAL_ROTATION
     * @see #TYPE_GENERAL_TRANSFORM
     * @see #getType
     * @since 1.2
     */
    public static final int TYPE_QUADRANT_ROTATION = 8;

    /**
     * This flag bit indicates that the transform defined by this object
     * performs a rotation by an arbitrary angle in addition to the
     * conversions indicated by other flag bits.
     * A rotation changes the angles of vectors by the same amount
     * regardless of the original direction of the vector and without
     * changing the length of the vector.
     * This flag bit is mutually exclusive with the
     * TYPE_QUADRANT_ROTATION flag.
     * @see #TYPE_IDENTITY
     * @see #TYPE_TRANSLATION
     * @see #TYPE_UNIFORM_SCALE
     * @see #TYPE_GENERAL_SCALE
     * @see #TYPE_FLIP
     * @see #TYPE_QUADRANT_ROTATION
     * @see #TYPE_GENERAL_TRANSFORM
     * @see #getType
     * @since 1.2
     */
    public static final int TYPE_GENERAL_ROTATION = 16;

    /**
     * This constant is a bit mask for any of the rotation flag bits.
     * @see #TYPE_QUADRANT_ROTATION
     * @see #TYPE_GENERAL_ROTATION
     * @since 1.2
     */
    public static final int TYPE_MASK_ROTATION = (TYPE_QUADRANT_ROTATION |
						  TYPE_GENERAL_ROTATION);

    /**
     * This constant indicates that the transform defined by this object
     * performs an arbitrary conversion of the input coordinates.
     * If this transform can be classified by any of the above constants,
     * the type will either be the constant TYPE_IDENTITY or a
     * combination of the appropriate flag bits for the various coordinate
     * conversions that this transform performs.
     * @see #TYPE_IDENTITY
     * @see #TYPE_TRANSLATION
     * @see #TYPE_UNIFORM_SCALE
     * @see #TYPE_GENERAL_SCALE
     * @see #TYPE_FLIP
     * @see #TYPE_QUADRANT_ROTATION
     * @see #TYPE_GENERAL_ROTATION
     * @see #getType
     * @since 1.2
     */
    public static final int TYPE_GENERAL_TRANSFORM = 32;

    /**
     * This constant is used for the internal state variable to indicate
     * that no calculations need to be performed and that the source
     * coordinates only need to be copied to their destinations to
     * complete the transformation equation of this transform.
     * @see #APPLY_TRANSLATE
     * @see #APPLY_SCALE
     * @see #APPLY_SHEAR
     * @see #state
     */
    static final int APPLY_IDENTITY = 0;

    /**
     * This constant is used for the internal state variable to indicate
     * that the translation components of the matrix (m02 and m12) need
     * to be added to complete the transformation equation of this transform.
     * @see #APPLY_IDENTITY
     * @see #APPLY_SCALE
     * @see #APPLY_SHEAR
     * @see #state
     */
    static final int APPLY_TRANSLATE = 1;

    /**
     * This constant is used for the internal state variable to indicate
     * that the scaling components of the matrix (m00 and m11) need
     * to be factored in to complete the transformation equation of
     * this transform.  If the APPLY_SHEAR bit is also set then it
     * indicates that the scaling components are not both 0.0.  If the
     * APPLY_SHEAR bit is not also set then it indicates that the
     * scaling components are not both 1.0.  If neither the APPLY_SHEAR
     * nor the APPLY_SCALE bits are set then the scaling components
     * are both 1.0, which means that the x and y components contribute
     * to the transformed coordinate, but they are not multiplied by
     * any scaling factor.
     * @see #APPLY_IDENTITY
     * @see #APPLY_TRANSLATE
     * @see #APPLY_SHEAR
     * @see #state
     */
    static final int APPLY_SCALE = 2;

    /**
     * This constant is used for the internal state variable to indicate
     * that the shearing components of the matrix (m01 and m10) need
     * to be factored in to complete the transformation equation of this
     * transform.  The presence of this bit in the state variable changes
     * the interpretation of the APPLY_SCALE bit as indicated in its
     * documentation.
     * @see #APPLY_IDENTITY
     * @see #APPLY_TRANSLATE
     * @see #APPLY_SCALE
     * @see #state
     */
    static final int APPLY_SHEAR = 4;

    /*
     * For methods which combine together the state of two separate
     * transforms and dispatch based upon the combination, these constants
     * specify how far to shift one of the states so that the two states 
     * are mutually non-interfering and provide constants for testing the
     * bits of the shifted (HI) state.  The methods in this class use
     * the convention that the state of "this" transform is unshifted and
     * the state of the "other" or "argument" transform is shifted (HI).
     */
    private static final int HI_SHIFT = 3;
    private static final int HI_IDENTITY = APPLY_IDENTITY << HI_SHIFT;
    private static final int HI_TRANSLATE = APPLY_TRANSLATE << HI_SHIFT;
    private static final int HI_SCALE = APPLY_SCALE << HI_SHIFT;
    private static final int HI_SHEAR = APPLY_SHEAR << HI_SHIFT;

    /**
     * The X coordinate scaling element of the 3x3
     * affine transformation matrix.
     * 
     * @serial
     */
    double m00;

    /**
     * The Y coordinate shearing element of the 3x3
     * affine transformation matrix.
     *
     * @serial
     */ 
     double m10;

    /**
     * The X coordinate shearing element of the 3x3
     * affine transformation matrix.
     *
     * @serial
     */
     double m01; 

    /**
     * The Y coordinate scaling element of the 3x3
     * affine transformation matrix.
     * 
     * @serial
     */
     double m11; 

    /**
     * The X coordinate of the translation element of the
     * 3x3 affine transformation matrix.
     * 
     * @serial
     */
     double m02;

    /**
     * The Y coordinate of the translation element of the
     * 3x3 affine transformation matrix.
     *
     * @serial
     */
     double m12;

    /**
     * This field keeps track of which components of the matrix need to
     * be applied when performing a transformation.
     * @see #APPLY_IDENTITY
     * @see #APPLY_TRANSLATE
     * @see #APPLY_SCALE
     * @see #APPLY_SHEAR
     */
    transient int state;

    /**
     * This field caches the current transformation type of the matrix.
     * @see #TYPE_IDENTITY
     * @see #TYPE_TRANSLATION
     * @see #TYPE_UNIFORM_SCALE
     * @see #TYPE_GENERAL_SCALE
     * @see #TYPE_FLIP
     * @see #TYPE_QUADRANT_ROTATION
     * @see #TYPE_GENERAL_ROTATION
     * @see #TYPE_GENERAL_TRANSFORM
     * @see #TYPE_UNKNOWN
     * @see #getType
     */
    private transient int type;

    private AffineTransform(double m00, double m10,
			    double m01, double m11,
			    double m02, double m12,
			    int state) {
	this.m00 = m00;
	this.m10 = m10;
	this.m01 = m01;
	this.m11 = m11;
	this.m02 = m02;
	this.m12 = m12;
	this.state = state;
	this.type = TYPE_UNKNOWN;
    }

    /**
     * Constructs a new <code>AffineTransform</code> representing the
     * Identity transformation.
     * @since 1.2
     */
    public AffineTransform() {
	m00 = m11 = 1.0;
	// m01 = m10 = m02 = m12 = 0.0;		__JOT_PIECE_94__
	// state = APPLY_IDENTITY;		__JOT_PIECE_95__
	// type = TYPE_IDENTITY;		__JOT_PIECE_96__
    }

    /**
     * Constructs a new <code>AffineTransform</code> that is a copy of
     * the specified <code>AffineTransform</code> object.
     * @param Tx the <code>AffineTransform</code> object to copy 
     * @since 1.2
     */
    public AffineTransform(AffineTransform Tx) {
	this.m00 = Tx.m00;
	this.m10 = Tx.m10;
	this.m01 = Tx.m01;
	this.m11 = Tx.m11;
	this.m02 = Tx.m02;
	this.m12 = Tx.m12;
	this.state = Tx.state;
	this.type = Tx.type;
    }

    /**
     * Constructs a new <code>AffineTransform</code> from 6 floating point
     * values representing the 6 specifiable entries of the 3x3
     * transformation matrix.
     *
     * @param m00 the X coordinate scaling element of the 3x3 matrix
     * @param m10 the Y coordinate shearing element of the 3x3 matrix
     * @param m01 the X coordinate shearing element of the 3x3 matrix
     * @param m11 the Y coordinate scaling element of the 3x3 matrix
     * @param m02 the X coordinate translation element of the 3x3 matrix
     * @param m12 the Y coordinate translation element of the 3x3 matrix
     * @since 1.2
     */
    public AffineTransform(float m00, float m10,
			   float m01, float m11,
			   float m02, float m12) {
	this.m00 = m00;
	this.m10 = m10;
	this.m01 = m01;
	this.m11 = m11;
	this.m02 = m02;
	this.m12 = m12;
	updateState();
    }

    /**
     * Constructs a new <code>AffineTransform</code> from an array of
     * floating point values representing either the 4 non-translation 
     * enries or the 6 specifiable entries of the 3x3 transformation
     * matrix.  The values are retrieved from the array as 
     * {&nbsp;m00&nbsp;m10&nbsp;m01&nbsp;m11&nbsp;[m02&nbsp;m12]}.
     * @param flatmatrix the float array containing the values to be set
     * in the new <code>AffineTransform</code> object. The length of the
     * array is assumed to be at least 4. If the length of the array is 
     * less than 6, only the first 4 values are taken. If the length of
     * the array is greater than 6, the first 6 values are taken.
     * @since 1.2
     */
    public AffineTransform(float[] flatmatrix) {
	m00 = flatmatrix[0];
	m10 = flatmatrix[1];
	m01 = flatmatrix[2];
	m11 = flatmatrix[3];
	if (flatmatrix.length > 5) {
	    m02 = flatmatrix[4];
	    m12 = flatmatrix[5];
	}
	updateState();
    }

    /**
     * Constructs a new <code>AffineTransform</code> from 6 double
     * precision values representing the 6 specifiable entries of the 3x3
     * transformation matrix.
     *
     * @param m00 the X coordinate scaling element of the 3x3 matrix
     * @param m10 the Y coordinate shearing element of the 3x3 matrix
     * @param m01 the X coordinate shearing element of the 3x3 matrix
     * @param m11 the Y coordinate scaling element of the 3x3 matrix
     * @param m02 the X coordinate translation element of the 3x3 matrix
     * @param m12 the Y coordinate translation element of the 3x3 matrix
     * @since 1.2
     */
    public AffineTransform(double m00, double m10,
			   double m01, double m11,
			   double m02, double m12) {
	this.m00 = m00;
	this.m10 = m10;
	this.m01 = m01;
	this.m11 = m11;
	this.m02 = m02;
	this.m12 = m12;
	updateState();
    }

    /**
     * Constructs a new <code>AffineTransform</code> from an array of
     * double precision values representing either the 4 non-translation
     * entries or the 6 specifiable entries of the 3x3 transformation
     * matrix. The values are retrieved from the array as 
     * {&nbsp;m00&nbsp;m10&nbsp;m01&nbsp;m11&nbsp;[m02&nbsp;m12]}.     
     * @param flatmatrix the double array containing the values to be set
     * in the new <code>AffineTransform</code> object. The length of the
     * array is assumed to be at least 4. If the length of the array is 
     * less than 6, only the first 4 values are taken. If the length of
     * the array is greater than 6, the first 6 values are taken.
     * @since 1.2
     */
    public AffineTransform(double[] flatmatrix) {
	m00 = flatmatrix[0];
	m10 = flatmatrix[1];
	m01 = flatmatrix[2];
	m11 = flatmatrix[3];
	if (flatmatrix.length > 5) {
	    m02 = flatmatrix[4];
	    m12 = flatmatrix[5];
	}
	updateState();
    }

    /**
     * Returns a transform representing a translation transformation.
     * The matrix representing the returned transform is:
     * <pre>
     *		[   1    0    tx  ]
     *		[   0    1    ty  ]
     *		[   0    0    1   ]
     * </pre>
     * @param tx the distance by which coordinates are translated in the
     * X axis direction
     * @param ty the distance by which coordinates are translated in the
     * Y axis direction
     * @return an <code>AffineTransform</code> object that represents a
     * 	translation transformation, created with the specified vector.
     * @since 1.2
     */
    public static AffineTransform getTranslateInstance(double tx, double ty) {
	AffineTransform Tx = new AffineTransform();
	Tx.setToTranslation(tx, ty);
	return Tx;
    }

    /**
     * Returns a transform representing a rotation transformation.
     * The matrix representing the returned transform is:
     * <pre>
     *		[   cos(theta)    -sin(theta)    0   ]
     *		[   sin(theta)     cos(theta)    0   ]
     *		[       0              0         1   ]
     * </pre>
     * Rotating by a positive angle theta rotates points on the positive
     * X axis toward the positive Y axis.
     * Note also the discussion of
     * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a>
     * above.
     * @param theta the angle of rotation measured in radians
     * @return an <code>AffineTransform</code> object that is a rotation
     *	transformation, created with the specified angle of rotation.
     * @since 1.2
     */
    public static AffineTransform getRotateInstance(double theta) {
	AffineTransform Tx = new AffineTransform();
	Tx.setToRotation(theta);
	return Tx;
    }

    /**
     * Returns a transform that rotates coordinates around an anchor point.
     * This operation is equivalent to translating the coordinates so
     * that the anchor point is at the origin (S1), then rotating them
     * about the new origin (S2), and finally translating so that the
     * intermediate origin is restored to the coordinates of the original
     * anchor point (S3).
     * <p>
     * This operation is equivalent to the following sequence of calls:
     * <pre>
     *     AffineTransform Tx = new AffineTransform();
     *     Tx.translate(anchorx, anchory);    // S3: final translation
     *     Tx.rotate(theta);		      // S2: rotate around anchor
     *     Tx.translate(-anchorx, -anchory);  // S1: translate anchor to origin
     * </pre>
     * The matrix representing the returned transform is:
     * <pre>
     *		[   cos(theta)    -sin(theta)    x-x*cos+y*sin  ]
     *		[   sin(theta)     cos(theta)    y-x*sin-y*cos  ]
     *		[       0              0               1        ]
     * </pre>
     * Rotating by a positive angle theta rotates points on the positive
     * X axis toward the positive Y axis.
     * Note also the discussion of
     * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a>
     * above.
     *
     * @param theta the angle of rotation measured in radians
     * @param anchorx the X coordinate of the rotation anchor point
     * @param anchory the Y coordinate of the rotation anchor point
     * @return an <code>AffineTransform</code> object that rotates 
     *	coordinates around the specified point by the specified angle of
     *	rotation.
     * @since 1.2
     */
    public static AffineTransform getRotateInstance(double theta,
						    double anchorx,
						    double anchory)
    {
	AffineTransform Tx = new AffineTransform();
	Tx.setToRotation(theta, anchorx, anchory);
	return Tx;
    }

    /**
     * Returns a transform that rotates coordinates according to
     * a rotation vector.
     * All coordinates rotate about the origin by the same amount.
     * The amount of rotation is such that coordinates along the former
     * positive X axis will subsequently align with the vector pointing
     * from the origin to the specified vector coordinates.
     * If both <code>vecx</code> and <code>vecy</code> are 0.0,
     * an identity transform is returned.
     * This operation is equivalent to calling:
     * <pre>
     *     AffineTransform.getRotateInstance(Math.atan2(vecy, vecx));
     * </pre>
     *
     * @param vecx the X coordinate of the rotation vector
     * @param vecy the Y coordinate of the rotation vector
     * @return an <code>AffineTransform</code> object that rotates
     *  coordinates according to the specified rotation vector.
     * @since 1.6
     */
    public static AffineTransform getRotateInstance(double vecx, double vecy) {
	AffineTransform Tx = new AffineTransform();
	Tx.setToRotation(vecx, vecy);
	return Tx;
    }

    /**
     * Returns a transform that rotates coordinates around an anchor
     * point accordinate to a rotation vector.
     * All coordinates rotate about the specified anchor coordinates
     * by the same amount.
     * The amount of rotation is such that coordinates along the former
     * positive X axis will subsequently align with the vector pointing
     * from the origin to the specified vector coordinates.
     * If both <code>vecx</code> and <code>vecy</code> are 0.0,
     * an identity transform is returned.
     * This operation is equivalent to calling:
     * <pre>
     *     AffineTransform.getRotateInstance(Math.atan2(vecy, vecx),
     *                                       anchorx, anchory);
     * </pre>
     *
     * @param vecx the X coordinate of the rotation vector
     * @param vecy the Y coordinate of the rotation vector
     * @param anchorx the X coordinate of the rotation anchor point
     * @param anchory the Y coordinate of the rotation anchor point
     * @return an <code>AffineTransform</code> object that rotates 
     *	coordinates around the specified point according to the
     *  specified rotation vector.
     * @since 1.6
     */
    public static AffineTransform getRotateInstance(double vecx,
						    double vecy,
						    double anchorx,
						    double anchory)
    {
	AffineTransform Tx = new AffineTransform();
	Tx.setToRotation(vecx, vecy, anchorx, anchory);
	return Tx;
    }

    /**
     * Returns a transform that rotates coordinates by the specified
     * number of quadrants.
     * This operation is equivalent to calling:
     * <pre>
     *     AffineTransform.getRotateInstance(numquadrants * Math.PI / 2.0);
     * </pre>
     * Rotating by a positive number of quadrants rotates points on
     * the positive X axis toward the positive Y axis.
     * @param numquadrants the number of 90 degree arcs to rotate by
     * @return an <code>AffineTransform</code> object that rotates
     *  coordinates by the specified number of quadrants.
     * @since 1.6
     */
    public static AffineTransform getQuadrantRotateInstance(int numquadrants) {
	AffineTransform Tx = new AffineTransform();
	Tx.setToQuadrantRotation(numquadrants);
	return Tx;
    }

    /**
     * Returns a transform that rotates coordinates by the specified
     * number of quadrants around the specified anchor point.
     * This operation is equivalent to calling:
     * <pre>
     *     AffineTransform.getRotateInstance(numquadrants * Math.PI / 2.0,
     *                                       anchorx, anchory);
     * </pre>
     * Rotating by a positive number of quadrants rotates points on
     * the positive X axis toward the positive Y axis.
     *
     * @param numquadrants the number of 90 degree arcs to rotate by
     * @param anchorx the X coordinate of the rotation anchor point
     * @param anchory the Y coordinate of the rotation anchor point
     * @return an <code>AffineTransform</code> object that rotates 
     *	coordinates by the specified number of quadrants around the
     *  specified anchor point.
     * @since 1.6
     */
    public static AffineTransform getQuadrantRotateInstance(int numquadrants,
							    double anchorx,
							    double anchory)
    {
	AffineTransform Tx = new AffineTransform();
	Tx.setToQuadrantRotation(numquadrants, anchorx, anchory);
	return Tx;
    }

    /**
     * Returns a transform representing a scaling transformation.
     * The matrix representing the returned transform is:
     * <pre>
     *		[   sx   0    0   ]
     *		[   0    sy   0   ]
     *		[   0    0    1   ]
     * </pre>
     * @param sx the factor by which coordinates are scaled along the
     * X axis direction
     * @param sy the factor by which coordinates are scaled along the
     * Y axis direction
     * @return an <code>AffineTransform</code> object that scales 
     *	coordinates by the specified factors.
     * @since 1.2
     */
    public static AffineTransform getScaleInstance(double sx, double sy) {
	AffineTransform Tx = new AffineTransform();
	Tx.setToScale(sx, sy);
	return Tx;
    }

    /**
     * Returns a transform representing a shearing transformation.
     * The matrix representing the returned transform is:
     * <pre>
     *		[   1   shx   0   ]
     *		[  shy   1    0   ]
     *		[   0    0    1   ]
     * </pre>
     * @param shx the multiplier by which coordinates are shifted in the
     * direction of the positive X axis as a factor of their Y coordinate
     * @param shy the multiplier by which coordinates are shifted in the
     * direction of the positive Y axis as a factor of their X coordinate
     * @return an <code>AffineTransform</code> object that shears 
     *	coordinates by the specified multipliers.
     * @since 1.2
     */
    public static AffineTransform getShearInstance(double shx, double shy) {
	AffineTransform Tx = new AffineTransform();
	Tx.setToShear(shx, shy);
	return Tx;
    }

    /**
     * Retrieves the flag bits describing the conversion properties of
     * this transform.
     * The return value is either one of the constants TYPE_IDENTITY
     * or TYPE_GENERAL_TRANSFORM, or a combination of the
     * appriopriate flag bits.
     * A valid combination of flag bits is an exclusive OR operation
     * that can combine
     * the TYPE_TRANSLATION flag bit
     * in addition to either of the
     * TYPE_UNIFORM_SCALE or TYPE_GENERAL_SCALE flag bits
     * as well as either of the
     * TYPE_QUADRANT_ROTATION or TYPE_GENERAL_ROTATION flag bits.
     * @return the OR combination of any of the indicated flags that
     * apply to this transform
     * @see #TYPE_IDENTITY
     * @see #TYPE_TRANSLATION
     * @see #TYPE_UNIFORM_SCALE
     * @see #TYPE_GENERAL_SCALE
     * @see #TYPE_QUADRANT_ROTATION
     * @see #TYPE_GENERAL_ROTATION
     * @see #TYPE_GENERAL_TRANSFORM
     * @since 1.2
     */
    public int getType() {
	if (type == TYPE_UNKNOWN) {
	    calculateType();
	}
	return type;
    }

    /**
     * This is the utility function to calculate the flag bits when
     * they have not been cached.
     * @see #getType
     */
    private void calculateType() {
	int ret = TYPE_IDENTITY;
	boolean sgn0, sgn1;
	double M0, M1, M2, M3;
	updateState();
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    ret = TYPE_TRANSLATION;
	    /* NOBREAK */
	case (APPLY_SHEAR | APPLY_SCALE):
	    if ((M0 = m00) * (M2 = m01) + (M3 = m10) * (M1 = m11) != 0) {
		// Transformed unit vectors are not perpendicular...
		this.type = TYPE_GENERAL_TRANSFORM;
		return;
	    }
	    sgn0 = (M0 >= 0.0);
	    sgn1 = (M1 >= 0.0);
	    if (sgn0 == sgn1) {
		// sgn(M0) == sgn(M1) therefore sgn(M2) == -sgn(M3)
		// This is the "unflipped" (right-handed) state
		if (M0 != M1 || M2 != -M3) {
		    ret |= (TYPE_GENERAL_ROTATION | TYPE_GENERAL_SCALE);
		} else if (M0 * M1 - M2 * M3 != 1.0) {
		    ret |= (TYPE_GENERAL_ROTATION | TYPE_UNIFORM_SCALE);
		} else {
		    ret |= TYPE_GENERAL_ROTATION;
		}
	    } else {
		// sgn(M0) == -sgn(M1) therefore sgn(M2) == sgn(M3)
		// This is the "flipped" (left-handed) state
		if (M0 != -M1 || M2 != M3) {
		    ret |= (TYPE_GENERAL_ROTATION |
			    TYPE_FLIP |
			    TYPE_GENERAL_SCALE);
		} else if (M0 * M1 - M2 * M3 != 1.0) {
		    ret |= (TYPE_GENERAL_ROTATION |
			    TYPE_FLIP |
			    TYPE_UNIFORM_SCALE);
		} else {
		    ret |= (TYPE_GENERAL_ROTATION | TYPE_FLIP);
		}
	    }
	    break;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    ret = TYPE_TRANSLATION;
	    /* NOBREAK */
	case (APPLY_SHEAR):
	    sgn0 = ((M0 = m01) >= 0.0);
	    sgn1 = ((M1 = m10) >= 0.0);
	    if (sgn0 != sgn1) {
		// Different signs - simple 90 degree rotation
		if (M0 != -M1) {
		    ret |= (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_SCALE);
		} else if (M0 != 1.0 && M0 != -1.0) {
		    ret |= (TYPE_QUADRANT_ROTATION | TYPE_UNIFORM_SCALE);
		} else {
		    ret |= TYPE_QUADRANT_ROTATION;
		}
	    } else {
		// Same signs - 90 degree rotation plus an axis flip too
		if (M0 == M1) {
		    ret |= (TYPE_QUADRANT_ROTATION |
			    TYPE_FLIP |
			    TYPE_UNIFORM_SCALE);
		} else {
		    ret |= (TYPE_QUADRANT_ROTATION |
			    TYPE_FLIP |
			    TYPE_GENERAL_SCALE);
		}
	    }
	    break;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    ret = TYPE_TRANSLATION;
	    /* NOBREAK */
	case (APPLY_SCALE):
	    sgn0 = ((M0 = m00) >= 0.0);
	    sgn1 = ((M1 = m11) >= 0.0);
	    if (sgn0 == sgn1) {
		if (sgn0) {
		    // Both scaling factors non-negative - simple scale
		    // Note: APPLY_SCALE implies M0, M1 are not both 1
		    if (M0 == M1) {
			ret |= TYPE_UNIFORM_SCALE;
		    } else {
			ret |= TYPE_GENERAL_SCALE;
		    }
		} else {
		    // Both scaling factors negative - 180 degree rotation
		    if (M0 != M1) {
			ret |= (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_SCALE);
		    } else if (M0 != -1.0) {
			ret |= (TYPE_QUADRANT_ROTATION | TYPE_UNIFORM_SCALE);
		    } else {
			ret |= TYPE_QUADRANT_ROTATION;
		    }
		}
	    } else {
		// Scaling factor signs different - flip about some axis
		if (M0 == -M1) {
		    if (M0 == 1.0 || M0 == -1.0) {
			ret |= TYPE_FLIP;
		    } else {
			ret |= (TYPE_FLIP | TYPE_UNIFORM_SCALE);
		    }
		} else {
		    ret |= (TYPE_FLIP | TYPE_GENERAL_SCALE);
		}
	    }
	    break;
	case (APPLY_TRANSLATE):
	    ret = TYPE_TRANSLATION;
	    break;
	case (APPLY_IDENTITY):
	    break;
	}
	this.type = ret;
    }

    /**
     * Returns the determinant of the matrix representation of the transform.
     * The determinant is useful both to determine if the transform can
     * be inverted and to get a single value representing the
     * combined X and Y scaling of the transform.
     * <p>
     * If the determinant is non-zero, then this transform is
     * invertible and the various methods that depend on the inverse
     * transform do not need to throw a
     * {@link NoninvertibleTransformException}.
     * If the determinant is zero then this transform can not be
     * inverted since the transform maps all input coordinates onto
     * a line or a point.
     * If the determinant is near enough to zero then inverse transform
     * operations might not carry enough precision to produce meaningful
     * results.
     * <p>
     * If this transform represents a uniform scale, as indicated by
     * the <code>getType</code> method then the determinant also
     * represents the square of the uniform scale factor by which all of
     * the points are expanded from or contracted towards the origin.
     * If this transform represents a non-uniform scale or more general
     * transform then the determinant is not likely to represent a
     * value useful for any purpose other than determining if inverse
     * transforms are possible.
     * <p>
     * Mathematically, the determinant is calculated using the formula:
     * <pre>
     *		|  m00  m01  m02  |
     *		|  m10  m11  m12  |  =  m00 * m11 - m01 * m10
     *		|   0    0    1   |
     * </pre>
     *
     * @return the determinant of the matrix used to transform the
     * coordinates.
     * @see #getType
     * @see #createInverse
     * @see #inverseTransform
     * @see #TYPE_UNIFORM_SCALE
     * @since 1.2
     */
    public double getDeterminant() {
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SHEAR | APPLY_SCALE):
	    return m00 * m11 - m01 * m10;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	case (APPLY_SHEAR):
	    return -(m01 * m10);
	case (APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SCALE):
	    return m00 * m11;
	case (APPLY_TRANSLATE):
	case (APPLY_IDENTITY):
	    return 1.0;
	}
    }

    /**
     * Manually recalculates the state of the transform when the matrix
     * changes too much to predict the effects on the state.
     * The following table specifies what the various settings of the
     * state field say about the values of the corresponding matrix
     * element fields.
     * Note that the rules governing the SCALE fields are slightly
     * different depending on whether the SHEAR flag is also set.
     * <pre>
     *                     SCALE            SHEAR          TRANSLATE
     *                    m00/m11          m01/m10          m02/m12
     *
     * IDENTITY             1.0              0.0              0.0
     * TRANSLATE (TR)       1.0              0.0          not both 0.0
     * SCALE (SC)       not both 1.0         0.0              0.0
     * TR | SC          not both 1.0         0.0          not both 0.0
     * SHEAR (SH)           0.0          not both 0.0         0.0
     * TR | SH              0.0          not both 0.0     not both 0.0
     * SC | SH          not both 0.0     not both 0.0         0.0
     * TR | SC | SH     not both 0.0     not both 0.0     not both 0.0
     * </pre>
     */
    void updateState() {
	if (m01 == 0.0 && m10 == 0.0) {
	    if (m00 == 1.0 && m11 == 1.0) {
		if (m02 == 0.0 && m12 == 0.0) {
		    state = APPLY_IDENTITY;
		    type = TYPE_IDENTITY;
		} else {
		    state = APPLY_TRANSLATE;
		    type = TYPE_TRANSLATION;
		}
	    } else {
		if (m02 == 0.0 && m12 == 0.0) {
		    state = APPLY_SCALE;
		    type = TYPE_UNKNOWN;
		} else {
		    state = (APPLY_SCALE | APPLY_TRANSLATE);
		    type = TYPE_UNKNOWN;
		}
	    }
	} else {
	    if (m00 == 0.0 && m11 == 0.0) {
		if (m02 == 0.0 && m12 == 0.0) {
		    state = APPLY_SHEAR;
		    type = TYPE_UNKNOWN;
		} else {
		    state = (APPLY_SHEAR | APPLY_TRANSLATE);
		    type = TYPE_UNKNOWN;
		}
	    } else {
		if (m02 == 0.0 && m12 == 0.0) {
		    state = (APPLY_SHEAR | APPLY_SCALE);
		    type = TYPE_UNKNOWN;
		} else {
		    state = (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE);
		    type = TYPE_UNKNOWN;
		}
	    }
	}
    }

    /*
     * Convenience method used internally to throw exceptions when
     * a case was forgotten in a switch statement.
     */
    private void stateError() {
	throw new InternalError("missing case in transform state switch");
    }
    
    /**
     * Retrieves the 6 specifiable values in the 3x3 affine transformation
     * matrix and places them into an array of double precisions values.
     * The values are stored in the array as 
     * {&nbsp;m00&nbsp;m10&nbsp;m01&nbsp;m11&nbsp;m02&nbsp;m12&nbsp;}.
     * An array of 4 doubles can also be specified, in which case only the
     * first four elements representing the non-transform
     * parts of the array are retrieved and the values are stored into 
     * the array as {&nbsp;m00&nbsp;m10&nbsp;m01&nbsp;m11&nbsp;}
     * @param flatmatrix the double array used to store the returned
     * values.
     * @see #getScaleX
     * @see #getScaleY
     * @see #getShearX
     * @see #getShearY
     * @see #getTranslateX
     * @see #getTranslateY
     * @since 1.2
     */
    public void getMatrix(double[] flatmatrix) {
	flatmatrix[0] = m00;
	flatmatrix[1] = m10;
	flatmatrix[2] = m01;
	flatmatrix[3] = m11;
	if (flatmatrix.length > 5) {
	    flatmatrix[4] = m02;
	    flatmatrix[5] = m12;
	}
    }

    /**
     * Returns the X coordinate scaling element (m00) of the 3x3
     * affine transformation matrix.
     * @return a double value that is the X coordinate of the scaling
     *  element of the affine transformation matrix.
     * @see #getMatrix
     * @since 1.2
     */
    public double getScaleX() {
	return m00;
    }

    /**
     * Returns the Y coordinate scaling element (m11) of the 3x3
     * affine transformation matrix.
     * @return a double value that is the Y coordinate of the scaling
     *  element of the affine transformation matrix.
     * @see #getMatrix
     * @since 1.2
     */
    public double getScaleY() {
	return m11;
    }

    /**
     * Returns the X coordinate shearing element (m01) of the 3x3
     * affine transformation matrix.
     * @return a double value that is the X coordinate of the shearing
     *  element of the affine transformation matrix.
     * @see #getMatrix
     * @since 1.2
     */
    public double getShearX() {
	return m01;
    }

    /**
     * Returns the Y coordinate shearing element (m10) of the 3x3
     * affine transformation matrix.
     * @return a double value that is the Y coordinate of the shearing
     *  element of the affine transformation matrix.
     * @see #getMatrix
     * @since 1.2
     */
    public double getShearY() {
	return m10;
    }

    /**
     * Returns the X coordinate of the translation element (m02) of the
     * 3x3 affine transformation matrix.
     * @return a double value that is the X coordinate of the translation
     *  element of the affine transformation matrix.
     * @see #getMatrix
     * @since 1.2
     */
    public double getTranslateX() {
	return m02;
    }

    /**
     * Returns the Y coordinate of the translation element (m12) of the
     * 3x3 affine transformation matrix.
     * @return a double value that is the Y coordinate of the translation
     *  element of the affine transformation matrix. 
     * @see #getMatrix
     * @since 1.2
     */
    public double getTranslateY() {
	return m12;
    }

    /**
     * Concatenates this transform with a translation transformation.
     * This is equivalent to calling concatenate(T), where T is an
     * <code>AffineTransform</code> represented by the following matrix:
     * <pre>
     *		[   1    0    tx  ]
     *		[   0    1    ty  ]
     *		[   0    0    1   ]
     * </pre>
     * @param tx the distance by which coordinates are translated in the
     * X axis direction
     * @param ty the distance by which coordinates are translated in the
     * Y axis direction
     * @since 1.2
     */
    public void translate(double tx, double ty) {
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    m02 = tx * m00 + ty * m01 + m02;
	    m12 = tx * m10 + ty * m11 + m12;
	    if (m02 == 0.0 && m12 == 0.0) {
		state = APPLY_SHEAR | APPLY_SCALE;
		if (type != TYPE_UNKNOWN) {
		    type -= TYPE_TRANSLATION;
		}
	    }
	    return;
	case (APPLY_SHEAR | APPLY_SCALE):
	    m02 = tx * m00 + ty * m01;
	    m12 = tx * m10 + ty * m11;
	    if (m02 != 0.0 || m12 != 0.0) {
		state = APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE;
		type |= TYPE_TRANSLATION;
	    }
	    return;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    m02 = ty * m01 + m02;
	    m12 = tx * m10 + m12;
	    if (m02 == 0.0 && m12 == 0.0) {
		state = APPLY_SHEAR;
		if (type != TYPE_UNKNOWN) {
		    type -= TYPE_TRANSLATION;
		}
	    }
	    return;
	case (APPLY_SHEAR):
	    m02 = ty * m01;
	    m12 = tx * m10;
	    if (m02 != 0.0 || m12 != 0.0) {
		state = APPLY_SHEAR | APPLY_TRANSLATE;
		type |= TYPE_TRANSLATION;
	    }
	    return;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    m02 = tx * m00 + m02;
	    m12 = ty * m11 + m12;
	    if (m02 == 0.0 && m12 == 0.0) {
		state = APPLY_SCALE;
		if (type != TYPE_UNKNOWN) {
		    type -= TYPE_TRANSLATION;
		}
	    }
	    return;
	case (APPLY_SCALE):
	    m02 = tx * m00;
	    m12 = ty * m11;
	    if (m02 != 0.0 || m12 != 0.0) {
		state = APPLY_SCALE | APPLY_TRANSLATE;
		type |= TYPE_TRANSLATION;
	    }
	    return;
	case (APPLY_TRANSLATE):
	    m02 = tx + m02;
	    m12 = ty + m12;
	    if (m02 == 0.0 && m12 == 0.0) {
		state = APPLY_IDENTITY;
		type = TYPE_IDENTITY;
	    }
	    return;
	case (APPLY_IDENTITY):
	    m02 = tx;
	    m12 = ty;
	    if (tx != 0.0 || ty != 0.0) {
		state = APPLY_TRANSLATE;
		type = TYPE_TRANSLATION;
	    }
	    return;
	}
    }

    // Utility methods to optimize rotate methods.
    // These tables translate the flags during predictable quadrant
    // rotations where the shear and scale values are swapped and negated.
    private static final int rot90conversion[] = {
	/* IDENTITY => */        APPLY_SHEAR,
	/* TRANSLATE (TR) => */  APPLY_SHEAR | APPLY_TRANSLATE,
	/* SCALE (SC) => */      APPLY_SHEAR,
	/* SC | TR => */         APPLY_SHEAR | APPLY_TRANSLATE,
	/* SHEAR (SH) => */      APPLY_SCALE,
	/* SH | TR => */         APPLY_SCALE | APPLY_TRANSLATE,
	/* SH | SC => */         APPLY_SHEAR | APPLY_SCALE,
	/* SH | SC | TR => */    APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE,
    };
    private final void rotate90() {
	double M0 = m00;
	m00 = m01;
	m01 = -M0;
	M0 = m10;
	m10 = m11;
	m11 = -M0;
	int state = rot90conversion[this.state];
	if ((state & (APPLY_SHEAR | APPLY_SCALE)) == APPLY_SCALE &&
	    m00 == 1.0 && m11 == 1.0)
	{
	    state -= APPLY_SCALE;
	}
	this.state = state;
	type = TYPE_UNKNOWN;
    }
    private final void rotate180() {
	m00 = -m00;
	m11 = -m11;
	int state = this.state;
	if ((state & (APPLY_SHEAR)) != 0) {
	    // If there was a shear, then this rotation has no
	    // effect on the state.
	    m01 = -m01;
	    m10 = -m10;
	} else {
	    // No shear means the SCALE state may toggle when
	    // m00 and m11 are negated.
	    if (m00 == 1.0 && m11 == 1.0) {
		this.state = state & ~APPLY_SCALE;
	    } else {
		this.state = state | APPLY_SCALE;
	    }
	}
	type = TYPE_UNKNOWN;
    }
    private final void rotate270() {
	double M0 = m00;
	m00 = -m01;
	m01 = M0;
	M0 = m10;
	m10 = -m11;
	m11 = M0;
	int state = rot90conversion[this.state];
	if ((state & (APPLY_SHEAR | APPLY_SCALE)) == APPLY_SCALE &&
	    m00 == 1.0 && m11 == 1.0)
	{
	    state -= APPLY_SCALE;
	}
	this.state = state;
	type = TYPE_UNKNOWN;
    }

    /**
     * Concatenates this transform with a rotation transformation.
     * This is equivalent to calling concatenate(R), where R is an
     * <code>AffineTransform</code> represented by the following matrix:
     * <pre>
     *		[   cos(theta)    -sin(theta)    0   ]
     *		[   sin(theta)     cos(theta)    0   ]
     *		[       0              0         1   ]
     * </pre>
     * Rotating by a positive angle theta rotates points on the positive
     * X axis toward the positive Y axis.
     * Note also the discussion of
     * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a>
     * above.
     * @param theta the angle of rotation measured in radians
     * @since 1.2
     */
    public void rotate(double theta) {
	double sin = Math.sin(theta);
	if (sin == 1.0) {
	    rotate90();
	} else if (sin == -1.0) {
	    rotate270();
	} else {
	    double cos = Math.cos(theta);
	    if (cos == -1.0) {
		rotate180();
	    } else if (cos != 1.0) {
		double M0, M1;
		M0 = m00;
		M1 = m01;
		m00 =  cos * M0 + sin * M1;
		m01 = -sin * M0 + cos * M1;
		M0 = m10;
		M1 = m11;
		m10 =  cos * M0 + sin * M1;
		m11 = -sin * M0 + cos * M1;
		updateState();
	    }
	}
    }

    /**
     * Concatenates this transform with a transform that rotates
     * coordinates around an anchor point.
     * This operation is equivalent to translating the coordinates so
     * that the anchor point is at the origin (S1), then rotating them
     * about the new origin (S2), and finally translating so that the
     * intermediate origin is restored to the coordinates of the original
     * anchor point (S3).
     * <p>
     * This operation is equivalent to the following sequence of calls:
     * <pre>
     *     translate(anchorx, anchory);      // S3: final translation
     *     rotate(theta);                    // S2: rotate around anchor
     *     translate(-anchorx, -anchory);    // S1: translate anchor to origin
     * </pre>
     * Rotating by a positive angle theta rotates points on the positive
     * X axis toward the positive Y axis.
     * Note also the discussion of
     * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a>
     * above.
     *
     * @param theta the angle of rotation measured in radians
     * @param anchorx the X coordinate of the rotation anchor point
     * @param anchory the Y coordinate of the rotation anchor point
     * @since 1.2
     */
    public void rotate(double theta, double anchorx, double anchory) {
	// REMIND: Simple for now - optimize later
	translate(anchorx, anchory);
	rotate(theta);
	translate(-anchorx, -anchory);
    }

    /**
     * Concatenates this transform with a transform that rotates
     * coordinates according to a rotation vector.
     * All coordinates rotate about the origin by the same amount.
     * The amount of rotation is such that coordinates along the former
     * positive X axis will subsequently align with the vector pointing
     * from the origin to the specified vector coordinates.
     * If both <code>vecx</code> and <code>vecy</code> are 0.0,
     * no additional rotation is added to this transform.
     * This operation is equivalent to calling:
     * <pre>
     *          rotate(Math.atan2(vecy, vecx));
     * </pre>
     *
     * @param vecx the X coordinate of the rotation vector
     * @param vecy the Y coordinate of the rotation vector
     * @since 1.6
     */
    public void rotate(double vecx, double vecy) {
	if (vecy == 0.0) {
	    if (vecx < 0.0) {
		rotate180();
	    }
	    // If vecx > 0.0 - no rotation
	    // If vecx == 0.0 - undefined rotation - treat as no rotation
	} else if (vecx == 0.0) {
	    if (vecy > 0.0) {
		rotate90();
	    } else {  // vecy must be < 0.0
		rotate270();
	    }
	} else {
	    double len = Math.sqrt(vecx * vecx + vecy * vecy);
	    double sin = vecy / len;
	    double cos = vecx / len;
	    double M0, M1;
	    M0 = m00;
	    M1 = m01;
	    m00 =  cos * M0 + sin * M1;
	    m01 = -sin * M0 + cos * M1;
	    M0 = m10;
	    M1 = m11;
	    m10 =  cos * M0 + sin * M1;
	    m11 = -sin * M0 + cos * M1;
	    updateState();
	}
    }

    /**
     * Concatenates this transform with a transform that rotates
     * coordinates around an anchor point according to a rotation
     * vector.
     * All coordinates rotate about the specified anchor coordinates
     * by the same amount.
     * The amount of rotation is such that coordinates along the former
     * positive X axis will subsequently align with the vector pointing
     * from the origin to the specified vector coordinates.
     * If both <code>vecx</code> and <code>vecy</code> are 0.0,
     * the transform is not modified in any way.
     * This method is equivalent to calling:
     * <pre>
     *     rotate(Math.atan2(vecy, vecx), anchorx, anchory);
     * </pre>
     *
     * @param vecx the X coordinate of the rotation vector
     * @param vecy the Y coordinate of the rotation vector
     * @param anchorx the X coordinate of the rotation anchor point
     * @param anchory the Y coordinate of the rotation anchor point
     * @since 1.6
     */
    public void rotate(double vecx, double vecy,
		       double anchorx, double anchory)
    {
	// REMIND: Simple for now - optimize later
	translate(anchorx, anchory);
	rotate(vecx, vecy);
	translate(-anchorx, -anchory);
    }

    /**
     * Concatenates this transform with a transform that rotates
     * coordinates by the specified number of quadrants.
     * This is equivalent to calling:
     * <pre>
     *     rotate(numquadrants * Math.PI / 2.0);
     * </pre>
     * Rotating by a positive number of quadrants rotates points on
     * the positive X axis toward the positive Y axis.
     * @param numquadrants the number of 90 degree arcs to rotate by
     * @since 1.6
     */
    public void quadrantRotate(int numquadrants) {
	switch (numquadrants & 3) {
	case 0:
	    break;
	case 1:
	    rotate90();
	    break;
	case 2:
	    rotate180();
	    break;
	case 3:
	    rotate270();
	    break;
	}
    }

    /**
     * Concatenates this transform with a transform that rotates
     * coordinates by the specified number of quadrants around
     * the specified anchor point.
     * This method is equivalent to calling:
     * <pre>
     *     rotate(numquadrants * Math.PI / 2.0, anchorx, anchory);
     * </pre>
     * Rotating by a positive number of quadrants rotates points on
     * the positive X axis toward the positive Y axis.
     *
     * @param numquadrants the number of 90 degree arcs to rotate by
     * @param anchorx the X coordinate of the rotation anchor point
     * @param anchory the Y coordinate of the rotation anchor point
     * @since 1.6
     */
    public void quadrantRotate(int numquadrants,
			       double anchorx, double anchory)
    {
	switch (numquadrants & 3) {
	case 0:
	    return;
	case 1:
	    m02 += anchorx * (m00 - m01) + anchory * (m01 + m00);
	    m12 += anchorx * (m10 - m11) + anchory * (m11 + m10);
	    rotate90();
	    break;
	case 2:
	    m02 += anchorx * (m00 + m00) + anchory * (m01 + m01);
	    m12 += anchorx * (m10 + m10) + anchory * (m11 + m11);
	    rotate180();
	    break;
	case 3:
	    m02 += anchorx * (m00 + m01) + anchory * (m01 - m00);
	    m12 += anchorx * (m10 + m11) + anchory * (m11 - m10);
	    rotate270();
	    break;
	}
	if (m02 == 0.0 && m12 == 0.0) {
	    state &= ~APPLY_TRANSLATE;
	} else {
	    state |= APPLY_TRANSLATE;
	}
    }

    /**
     * Concatenates this transform with a scaling transformation.
     * This is equivalent to calling concatenate(S), where S is an
     * <code>AffineTransform</code> represented by the following matrix:
     * <pre>
     *		[   sx   0    0   ]
     *		[   0    sy   0   ]
     *		[   0    0    1   ]
     * </pre>
     * @param sx the factor by which coordinates are scaled along the   
     * X axis direction
     * @param sy the factor by which coordinates are scaled along the
     * Y axis direction 
     * @since 1.2
     */
    public void scale(double sx, double sy) {
	int state = this.state;
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SHEAR | APPLY_SCALE):
	    m00 *= sx;
	    m11 *= sy;
	    /* NOBREAK */
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	case (APPLY_SHEAR):
	    m01 *= sy;
	    m10 *= sx;
	    if (m01 == 0 && m10 == 0) {
		state &= APPLY_TRANSLATE;
		if (m00 == 1.0 && m11 == 1.0) {
		    this.type = (state == APPLY_IDENTITY
				 ? TYPE_IDENTITY
				 : TYPE_TRANSLATION);
		} else {
		    state |= APPLY_SCALE;
		    this.type = TYPE_UNKNOWN;
		}
		this.state = state;
	    }
	    return;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SCALE):
	    m00 *= sx;
	    m11 *= sy;
	    if (m00 == 1.0 && m11 == 1.0) {
		this.state = (state &= APPLY_TRANSLATE);
		this.type = (state == APPLY_IDENTITY
			     ? TYPE_IDENTITY
			     : TYPE_TRANSLATION);
	    } else {
		this.type = TYPE_UNKNOWN;
	    }
	    return;
	case (APPLY_TRANSLATE):
	case (APPLY_IDENTITY):
	    m00 = sx;
	    m11 = sy;
	    if (sx != 1.0 || sy != 1.0) {
		this.state = state | APPLY_SCALE;
		this.type = TYPE_UNKNOWN;
	    }
	    return;
	}
    }

    /**
     * Concatenates this transform with a shearing transformation.
     * This is equivalent to calling concatenate(SH), where SH is an
     * <code>AffineTransform</code> represented by the following matrix:
     * <pre>
     *		[   1   shx   0   ]
     *		[  shy   1    0   ]
     *		[   0    0    1   ]
     * </pre>
     * @param shx the multiplier by which coordinates are shifted in the
     * direction of the positive X axis as a factor of their Y coordinate
     * @param shy the multiplier by which coordinates are shifted in the
     * direction of the positive Y axis as a factor of their X coordinate
     * @since 1.2
     */
    public void shear(double shx, double shy) {
	int state = this.state;
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SHEAR | APPLY_SCALE):
	    double M0, M1;
	    M0 = m00;
	    M1 = m01;
	    m00 = M0 + M1 * shy;
	    m01 = M0 * shx + M1;

	    M0 = m10;
	    M1 = m11;
	    m10 = M0 + M1 * shy;
	    m11 = M0 * shx + M1;
	    updateState();
	    return;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	case (APPLY_SHEAR):
	    m00 = m01 * shy;
	    m11 = m10 * shx;
	    if (m00 != 0.0 || m11 != 0.0) {
		this.state = state | APPLY_SCALE;
	    }
	    this.type = TYPE_UNKNOWN;
	    return;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SCALE):
	    m01 = m00 * shx;
	    m10 = m11 * shy;
	    if (m01 != 0.0 || m10 != 0.0) {
		this.state = state | APPLY_SHEAR;
	    }
	    this.type = TYPE_UNKNOWN;
	    return;
	case (APPLY_TRANSLATE):
	case (APPLY_IDENTITY):
	    m01 = shx;
	    m10 = shy;
	    if (m01 != 0.0 || m10 != 0.0) {
		this.state = state | APPLY_SCALE | APPLY_SHEAR;
		this.type = TYPE_UNKNOWN;
	    }
	    return;
	}
    }

    /**
     * Resets this transform to the Identity transform.
     * @since 1.2
     */
    public void setToIdentity() {
	m00 = m11 = 1.0;
	m10 = m01 = m02 = m12 = 0.0;
	state = APPLY_IDENTITY;
	type = TYPE_IDENTITY;
    }

    /**
     * Sets this transform to a translation transformation.
     * The matrix representing this transform becomes:
     * <pre>
     *		[   1    0    tx  ]
     *		[   0    1    ty  ]
     *		[   0    0    1   ]
     * </pre>
     * @param tx the distance by which coordinates are translated in the
     * X axis direction
     * @param ty the distance by which coordinates are translated in the
     * Y axis direction
     * @since 1.2
     */
    public void setToTranslation(double tx, double ty) {
	m00 = 1.0;
	m10 = 0.0;
	m01 = 0.0;
	m11 = 1.0;
	m02 = tx;
	m12 = ty;
	if (tx != 0.0 || ty != 0.0) {
	    state = APPLY_TRANSLATE;
	    type = TYPE_TRANSLATION;
	} else {
	    state = APPLY_IDENTITY;
	    type = TYPE_IDENTITY;
	}
    }

    /**
     * Sets this transform to a rotation transformation.
     * The matrix representing this transform becomes:
     * <pre>
     *		[   cos(theta)    -sin(theta)    0   ]
     *		[   sin(theta)     cos(theta)    0   ]
     *		[       0              0         1   ]
     * </pre>
     * Rotating by a positive angle theta rotates points on the positive
     * X axis toward the positive Y axis.
     * Note also the discussion of
     * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a>
     * above.
     * @param theta the angle of rotation measured in radians
     * @since 1.2
     */
    public void setToRotation(double theta) {
	double sin = Math.sin(theta);
	double cos;
	if (sin == 1.0 || sin == -1.0) {
	    cos = 0.0;
	    state = APPLY_SHEAR;
	    type = TYPE_QUADRANT_ROTATION;
	} else {
	    cos = Math.cos(theta);
	    if (cos == -1.0) {
		sin = 0.0;
		state = APPLY_SCALE;
		type = TYPE_QUADRANT_ROTATION;
	    } else if (cos == 1.0) {
		sin = 0.0;
		state = APPLY_IDENTITY;
		type = TYPE_IDENTITY;
	    } else {
		state = APPLY_SHEAR | APPLY_SCALE;
		type = TYPE_GENERAL_ROTATION;
	    }
	}
	m00 =  cos;
	m10 =  sin;
	m01 = -sin;
	m11 =  cos;
	m02 =  0.0;
	m12 =  0.0;
    }

    /**
     * Sets this transform to a translated rotation transformation.
     * This operation is equivalent to translating the coordinates so
     * that the anchor point is at the origin (S1), then rotating them
     * about the new origin (S2), and finally translating so that the
     * intermediate origin is restored to the coordinates of the original
     * anchor point (S3).
     * <p>
     * This operation is equivalent to the following sequence of calls:
     * <pre>
     *     setToTranslation(anchorx, anchory); // S3: final translation
     *     rotate(theta);                      // S2: rotate around anchor
     *     translate(-anchorx, -anchory);      // S1: translate anchor to origin
     * </pre>
     * The matrix representing this transform becomes:
     * <pre>
     *		[   cos(theta)    -sin(theta)    x-x*cos+y*sin  ]
     *		[   sin(theta)     cos(theta)    y-x*sin-y*cos  ]
     *		[       0              0               1        ]
     * </pre>
     * Rotating by a positive angle theta rotates points on the positive
     * X axis toward the positive Y axis.
     * Note also the discussion of
     * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a>
     * above.
     *
     * @param theta the angle of rotation measured in radians
     * @param anchorx the X coordinate of the rotation anchor point
     * @param anchory the Y coordinate of the rotation anchor point
     * @since 1.2
     */
    public void setToRotation(double theta, double anchorx, double anchory) {
	setToRotation(theta);
	double sin = m10;
	double oneMinusCos = 1.0 - m00;
	m02 = anchorx * oneMinusCos + anchory * sin;
	m12 = anchory * oneMinusCos - anchorx * sin;
	if (m02 != 0.0 || m12 != 0.0) {
	    state |= APPLY_TRANSLATE;
	    type |= TYPE_TRANSLATION;
	}
    }

    /**
     * Sets this transform to a rotation transformation that rotates
     * coordinates according to a rotation vector.
     * All coordinates rotate about the origin by the same amount.
     * The amount of rotation is such that coordinates along the former
     * positive X axis will subsequently align with the vector pointing
     * from the origin to the specified vector coordinates.
     * If both <code>vecx</code> and <code>vecy</code> are 0.0,
     * the transform is set to an identity transform.
     * This operation is equivalent to calling:
     * <pre>
     *     setToRotation(Math.atan2(vecy, vecx));
     * </pre>
     *
     * @param vecx the X coordinate of the rotation vector
     * @param vecy the Y coordinate of the rotation vector
     * @since 1.6
     */
    public void setToRotation(double vecx, double vecy) {
	double sin, cos;
	if (vecy == 0) {
	    sin = 0.0;
	    if (vecx < 0.0) {
		cos = -1.0;
		state = APPLY_SCALE;
		type = TYPE_QUADRANT_ROTATION;
	    } else {
		cos = 1.0;
		state = APPLY_IDENTITY;
		type = TYPE_IDENTITY;
	    }
	} else if (vecx == 0) {
	    cos = 0.0;
	    sin = (vecy > 0.0) ? 1.0 : -1.0;
	    state = APPLY_SHEAR;
	    type = TYPE_QUADRANT_ROTATION;
	} else {
	    double len = Math.sqrt(vecx * vecx + vecy * vecy);
	    cos = vecx / len;
	    sin = vecy / len;
	    state = APPLY_SHEAR | APPLY_SCALE;
	    type = TYPE_GENERAL_ROTATION;
	}
	m00 =  cos;
	m10 =  sin;
	m01 = -sin;
	m11 =  cos;
	m02 =  0.0;
	m12 =  0.0;
    }

    /**
     * Sets this transform to a rotation transformation that rotates
     * coordinates around an anchor point according to a rotation
     * vector.
     * All coordinates rotate about the specified anchor coordinates
     * by the same amount.
     * The amount of rotation is such that coordinates along the former
     * positive X axis will subsequently align with the vector pointing
     * from the origin to the specified vector coordinates.
     * If both <code>vecx</code> and <code>vecy</code> are 0.0,
     * the transform is set to an identity transform.
     * This operation is equivalent to calling:
     * <pre>
     *     setToTranslation(Math.atan2(vecy, vecx), anchorx, anchory);
     * </pre>
     *
     * @param vecx the X coordinate of the rotation vector
     * @param vecy the Y coordinate of the rotation vector
     * @param anchorx the X coordinate of the rotation anchor point
     * @param anchory the Y coordinate of the rotation anchor point
     * @since 1.6
     */
    public void setToRotation(double vecx, double vecy,
			      double anchorx, double anchory)
    {
	setToRotation(vecx, vecy);
	double sin = m10;
	double oneMinusCos = 1.0 - m00;
	m02 = anchorx * oneMinusCos + anchory * sin;
	m12 = anchory * oneMinusCos - anchorx * sin;
	if (m02 != 0.0 || m12 != 0.0) {
	    state |= APPLY_TRANSLATE;
	    type |= TYPE_TRANSLATION;
	}
    }

    /**
     * Sets this transform to a rotation transformation that rotates
     * coordinates by the specified number of quadrants.
     * This operation is equivalent to calling:
     * <pre>
     *     setToRotation(numquadrants * Math.PI / 2.0);
     * </pre>
     * Rotating by a positive number of quadrants rotates points on
     * the positive X axis toward the positive Y axis.
     * @param numquadrants the number of 90 degree arcs to rotate by
     * @since 1.6
     */
    public void setToQuadrantRotation(int numquadrants) {
	switch (numquadrants & 3) {
	case 0:
	    m00 =  1.0;
	    m10 =  0.0;
	    m01 =  0.0;
	    m11 =  1.0;
	    m02 =  0.0;
	    m12 =  0.0;
	    state = APPLY_IDENTITY;
	    type = TYPE_IDENTITY;
	    break;
	case 1:
	    m00 =  0.0;
	    m10 =  1.0;
	    m01 = -1.0;
	    m11 =  0.0;
	    m02 =  0.0;
	    m12 =  0.0;
	    state = APPLY_SHEAR;
	    type = TYPE_QUADRANT_ROTATION;
	    break;
	case 2:
	    m00 = -1.0;
	    m10 =  0.0;
	    m01 =  0.0;
	    m11 = -1.0;
	    m02 =  0.0;
	    m12 =  0.0;
	    state = APPLY_SCALE;
	    type = TYPE_QUADRANT_ROTATION;
	    break;
	case 3:
	    m00 =  0.0;
	    m10 = -1.0;
	    m01 =  1.0;
	    m11 =  0.0;
	    m02 =  0.0;
	    m12 =  0.0;
	    state = APPLY_SHEAR;
	    type = TYPE_QUADRANT_ROTATION;
	    break;
	}
    }

    /**
     * Sets this transform to a translated rotation transformation
     * that rotates coordinates by the specified number of quadrants
     * around the specified anchor point.
     * This operation is equivalent to calling:
     * <pre>
     *     setToRotation(numquadrants * Math.PI / 2.0, anchorx, anchory);
     * </pre>
     * Rotating by a positive number of quadrants rotates points on
     * the positive X axis toward the positive Y axis.
     *
     * @param numquadrants the number of 90 degree arcs to rotate by
     * @param anchorx the X coordinate of the rotation anchor point
     * @param anchory the Y coordinate of the rotation anchor point
     * @since 1.6
     */
    public void setToQuadrantRotation(int numquadrants,
				      double anchorx, double anchory)
    {
	switch (numquadrants & 3) {
	case 0:
	    m00 =  1.0;
	    m10 =  0.0;
	    m01 =  0.0;
	    m11 =  1.0;
	    m02 =  0.0;
	    m12 =  0.0;
	    state = APPLY_IDENTITY;
	    type = TYPE_IDENTITY;
	    break;
	case 1:
	    m00 =  0.0;
	    m10 =  1.0;
	    m01 = -1.0;
	    m11 =  0.0;
	    m02 =  anchorx + anchory;
	    m12 =  anchory - anchorx;
	    if (m02 == 0.0 && m12 == 0.0) {
		state = APPLY_SHEAR;
		type = TYPE_QUADRANT_ROTATION;
	    } else {
		state = APPLY_SHEAR | APPLY_TRANSLATE;
		type = TYPE_QUADRANT_ROTATION | TYPE_TRANSLATION;
	    }
	    break;
	case 2:
	    m00 = -1.0;
	    m10 =  0.0;
	    m01 =  0.0;
	    m11 = -1.0;
	    m02 =  anchorx + anchorx;
	    m12 =  anchory + anchory;
	    if (m02 == 0.0 && m12 == 0.0) {
		state = APPLY_SCALE;
		type = TYPE_QUADRANT_ROTATION;
	    } else {
		state = APPLY_SCALE | APPLY_TRANSLATE;
		type = TYPE_QUADRANT_ROTATION | TYPE_TRANSLATION;
	    }
	    break;
	case 3:
	    m00 =  0.0;
	    m10 = -1.0;
	    m01 =  1.0;
	    m11 =  0.0;
	    m02 =  anchorx - anchory;
	    m12 =  anchory + anchorx;
	    if (m02 == 0.0 && m12 == 0.0) {
		state = APPLY_SHEAR;
		type = TYPE_QUADRANT_ROTATION;
	    } else {
		state = APPLY_SHEAR | APPLY_TRANSLATE;
		type = TYPE_QUADRANT_ROTATION | TYPE_TRANSLATION;
	    }
	    break;
	}
    }

    /**
     * Sets this transform to a scaling transformation.
     * The matrix representing this transform becomes:
     * <pre>
     *		[   sx   0    0   ]
     *		[   0    sy   0   ]
     *		[   0    0    1   ]
     * </pre>
     * @param sx the factor by which coordinates are scaled along the
     * X axis direction
     * @param sy the factor by which coordinates are scaled along the
     * Y axis direction
     * @since 1.2
     */
    public void setToScale(double sx, double sy) {
	m00 = sx;
	m10 = 0.0;
	m01 = 0.0;
	m11 = sy;
	m02 = 0.0;
	m12 = 0.0;
	if (sx != 1.0 || sy != 1.0) {
	    state = APPLY_SCALE;
	    type = TYPE_UNKNOWN;
	} else {
	    state = APPLY_IDENTITY;
	    type = TYPE_IDENTITY;
	}
    }

    /**
     * Sets this transform to a shearing transformation.
     * The matrix representing this transform becomes:
     * <pre>
     *		[   1   shx   0   ]
     *		[  shy   1    0   ]
     *		[   0    0    1   ]
     * </pre>
     * @param shx the multiplier by which coordinates are shifted in the
     * direction of the positive X axis as a factor of their Y coordinate
     * @param shy the multiplier by which coordinates are shifted in the
     * direction of the positive Y axis as a factor of their X coordinate
     * @since 1.2
     */
    public void setToShear(double shx, double shy) {
	m00 = 1.0;
	m01 = shx;
	m10 = shy;
	m11 = 1.0;
	m02 = 0.0;
	m12 = 0.0;
	if (shx != 0.0 || shy != 0.0) {
	    state = (APPLY_SHEAR | APPLY_SCALE);
	    type = TYPE_UNKNOWN;
	} else {
	    state = APPLY_IDENTITY;
	    type = TYPE_IDENTITY;
	}
    }

    /**
     * Sets this transform to a copy of the transform in the specified
     * <code>AffineTransform</code> object.
     * @param Tx the <code>AffineTransform</code> object from which to
     * copy the transform
     * @since 1.2
     */
    public void setTransform(AffineTransform Tx) {
	this.m00 = Tx.m00;
	this.m10 = Tx.m10;
	this.m01 = Tx.m01;
	this.m11 = Tx.m11;
	this.m02 = Tx.m02;
	this.m12 = Tx.m12;
	this.state = Tx.state;
	this.type = Tx.type;
    }

    /**
     * Sets this transform to the matrix specified by the 6
     * double precision values.
     *
     * @param m00 the X coordinate scaling element of the 3x3 matrix
     * @param m10 the Y coordinate shearing element of the 3x3 matrix
     * @param m01 the X coordinate shearing element of the 3x3 matrix
     * @param m11 the Y coordinate scaling element of the 3x3 matrix
     * @param m02 the X coordinate translation element of the 3x3 matrix
     * @param m12 the Y coordinate translation element of the 3x3 matrix
     * @since 1.2
     */
    public void setTransform(double m00, double m10,
			     double m01, double m11,
			     double m02, double m12) {
	this.m00 = m00;
	this.m10 = m10;
	this.m01 = m01;
	this.m11 = m11;
	this.m02 = m02;
	this.m12 = m12;
	updateState();
    }

    /**
     * Concatenates an <code>AffineTransform</code> <code>Tx</code> to
     * this <code>AffineTransform</code> Cx in the most commonly useful
     * way to provide a new user space
     * that is mapped to the former user space by <code>Tx</code>.
     * Cx is updated to perform the combined transformation.
     * Transforming a point p by the updated transform Cx' is
     * equivalent to first transforming p by <code>Tx</code> and then
     * transforming the result by the original transform Cx like this:
     * Cx'(p) = Cx(Tx(p))  
     * In matrix notation, if this transform Cx is
     * represented by the matrix [this] and <code>Tx</code> is represented
     * by the matrix [Tx] then this method does the following:
     * <pre>
     *		[this] = [this] x [Tx]
     * </pre>
     * @param Tx the <code>AffineTransform</code> object to be
     * concatenated with this <code>AffineTransform</code> object.
     * @see #preConcatenate
     * @since 1.2
     */
    public void concatenate(AffineTransform Tx) {
        double M0, M1;
	double T00, T01, T10, T11;
	double T02, T12;
	int mystate = state;
	int txstate = Tx.state;
	switch ((txstate << HI_SHIFT) | mystate) {

	    /* ---------- Tx == IDENTITY cases ---------- */
	case (HI_IDENTITY | APPLY_IDENTITY):
	case (HI_IDENTITY | APPLY_TRANSLATE):
	case (HI_IDENTITY | APPLY_SCALE):
	case (HI_IDENTITY | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_IDENTITY | APPLY_SHEAR):
	case (HI_IDENTITY | APPLY_SHEAR | APPLY_TRANSLATE):
	case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE):
	case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    return;

	    /* ---------- this == IDENTITY cases ---------- */
	case (HI_SHEAR | HI_SCALE | HI_TRANSLATE | APPLY_IDENTITY):
	    m01 = Tx.m01;
	    m10 = Tx.m10;
	    /* NOBREAK */
	case (HI_SCALE | HI_TRANSLATE | APPLY_IDENTITY):
	    m00 = Tx.m00;
	    m11 = Tx.m11;
	    /* NOBREAK */
	case (HI_TRANSLATE | APPLY_IDENTITY):
	    m02 = Tx.m02;
	    m12 = Tx.m12;
	    state = txstate;
	    type = Tx.type;
	    return;
	case (HI_SHEAR | HI_SCALE | APPLY_IDENTITY):
	    m01 = Tx.m01;
	    m10 = Tx.m10;
	    /* NOBREAK */
	case (HI_SCALE | APPLY_IDENTITY):
	    m00 = Tx.m00;
	    m11 = Tx.m11;
	    state = txstate;
	    type = Tx.type;
	    return;
	case (HI_SHEAR | HI_TRANSLATE | APPLY_IDENTITY):
	    m02 = Tx.m02;
	    m12 = Tx.m12;
	    /* NOBREAK */
	case (HI_SHEAR | APPLY_IDENTITY):
	    m01 = Tx.m01;
	    m10 = Tx.m10;
            m00 = m11 = 0.0;
	    state = txstate;
	    type = Tx.type;
	    return;

	    /* ---------- Tx == TRANSLATE cases ---------- */
	case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE):
	case (HI_TRANSLATE | APPLY_SHEAR | APPLY_TRANSLATE):
	case (HI_TRANSLATE | APPLY_SHEAR):
	case (HI_TRANSLATE | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_TRANSLATE | APPLY_SCALE):
	case (HI_TRANSLATE | APPLY_TRANSLATE):
	    translate(Tx.m02, Tx.m12);
	    return;

	    /* ---------- Tx == SCALE cases ---------- */
	case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE):
	case (HI_SCALE | APPLY_SHEAR | APPLY_TRANSLATE):
	case (HI_SCALE | APPLY_SHEAR):
	case (HI_SCALE | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_SCALE | APPLY_SCALE):
	case (HI_SCALE | APPLY_TRANSLATE):
	    scale(Tx.m00, Tx.m11);
	    return;

	    /* ---------- Tx == SHEAR cases ---------- */
	case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE):
	    T01 = Tx.m01; T10 = Tx.m10;
	    M0 = m00;
	    m00 = m01 * T10;
	    m01 = M0 * T01;
	    M0 = m10;
	    m10 = m11 * T10;
	    m11 = M0 * T01;
	    type = TYPE_UNKNOWN;
	    return;
	case (HI_SHEAR | APPLY_SHEAR | APPLY_TRANSLATE):
	case (HI_SHEAR | APPLY_SHEAR):
	    m00 = m01 * Tx.m10;
	    m01 = 0.0;
	    m11 = m10 * Tx.m01;
	    m10 = 0.0;
	    state = mystate ^ (APPLY_SHEAR | APPLY_SCALE);
	    type = TYPE_UNKNOWN;
	    return;
	case (HI_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_SHEAR | APPLY_SCALE):
	    m01 = m00 * Tx.m01;
	    m00 = 0.0;
	    m10 = m11 * Tx.m10;
	    m11 = 0.0;
	    state = mystate ^ (APPLY_SHEAR | APPLY_SCALE);
	    type = TYPE_UNKNOWN;
	    return;
	case (HI_SHEAR | APPLY_TRANSLATE):
	    m00 = 0.0;
	    m01 = Tx.m01;
	    m10 = Tx.m10;
	    m11 = 0.0;
	    state = APPLY_TRANSLATE | APPLY_SHEAR;
	    type = TYPE_UNKNOWN;
	    return;
	}
	// If Tx has more than one attribute, it is not worth optimizing
	// all of those cases...
	T00 = Tx.m00; T01 = Tx.m01; T02 = Tx.m02;
	T10 = Tx.m10; T11 = Tx.m11; T12 = Tx.m12;
	switch (mystate) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE):
	    state = mystate | txstate;
	    /* NOBREAK */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    M0 = m00;
	    M1 = m01;
	    m00  = T00 * M0 + T10 * M1;
	    m01  = T01 * M0 + T11 * M1;
	    m02 += T02 * M0 + T12 * M1;

	    M0 = m10;
	    M1 = m11;
	    m10  = T00 * M0 + T10 * M1;
	    m11  = T01 * M0 + T11 * M1;
	    m12 += T02 * M0 + T12 * M1;
	    type = TYPE_UNKNOWN;
	    return;

	case (APPLY_SHEAR | APPLY_TRANSLATE):
	case (APPLY_SHEAR):
	    M0 = m01;
	    m00  = T10 * M0;
	    m01  = T11 * M0;
	    m02 += T12 * M0;

	    M0 = m10;
	    m10  = T00 * M0;
	    m11  = T01 * M0;
	    m12 += T02 * M0;
	    break;

	case (APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SCALE):
	    M0 = m00;
	    m00  = T00 * M0;
	    m01  = T01 * M0;
	    m02 += T02 * M0;

	    M0 = m11;
	    m10  = T10 * M0;
	    m11  = T11 * M0;
	    m12 += T12 * M0;
	    break;

	case (APPLY_TRANSLATE):
	    m00  = T00;
	    m01  = T01;
	    m02 += T02;

	    m10  = T10;
	    m11  = T11;
	    m12 += T12;
	    state = txstate | APPLY_TRANSLATE;
	    type = TYPE_UNKNOWN;
	    return;
	}
	updateState();
    }

    /**
     * Concatenates an <code>AffineTransform</code> <code>Tx</code> to
     * this <code>AffineTransform</code> Cx
     * in a less commonly used way such that <code>Tx</code> modifies the
     * coordinate transformation relative to the absolute pixel
     * space rather than relative to the existing user space.
     * Cx is updated to perform the combined transformation.
     * Transforming a point p by the updated transform Cx' is
     * equivalent to first transforming p by the original transform
     * Cx and then transforming the result by 
     * <code>Tx</code> like this: 
     * Cx'(p) = Tx(Cx(p))  
     * In matrix notation, if this transform Cx
     * is represented by the matrix [this] and <code>Tx</code> is
     * represented by the matrix [Tx] then this method does the
     * following:
     * <pre>
     *		[this] = [Tx] x [this]
     * </pre>
     * @param Tx the <code>AffineTransform</code> object to be
     * concatenated with this <code>AffineTransform</code> object.
     * @see #concatenate
     * @since 1.2
     */
    public void preConcatenate(AffineTransform Tx) {
	double M0, M1;
	double T00, T01, T10, T11;
	double T02, T12;
	int mystate = state;
	int txstate = Tx.state;
	switch ((txstate << HI_SHIFT) | mystate) {
	case (HI_IDENTITY | APPLY_IDENTITY):
	case (HI_IDENTITY | APPLY_TRANSLATE):
	case (HI_IDENTITY | APPLY_SCALE):
	case (HI_IDENTITY | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_IDENTITY | APPLY_SHEAR):
	case (HI_IDENTITY | APPLY_SHEAR | APPLY_TRANSLATE):
	case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE):
	case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    // Tx is IDENTITY...
	    return;

	case (HI_TRANSLATE | APPLY_IDENTITY):
	case (HI_TRANSLATE | APPLY_SCALE):
	case (HI_TRANSLATE | APPLY_SHEAR):
	case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE):
	    // Tx is TRANSLATE, this has no TRANSLATE
	    m02 = Tx.m02;
	    m12 = Tx.m12;
	    state = mystate | APPLY_TRANSLATE;
	    type |= TYPE_TRANSLATION;
	    return;

	case (HI_TRANSLATE | APPLY_TRANSLATE):
	case (HI_TRANSLATE | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_TRANSLATE | APPLY_SHEAR | APPLY_TRANSLATE):
	case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    // Tx is TRANSLATE, this has one too
	    m02 = m02 + Tx.m02;
	    m12 = m12 + Tx.m12;
	    return;

	case (HI_SCALE | APPLY_TRANSLATE):
	case (HI_SCALE | APPLY_IDENTITY):
	    // Only these two existing states need a new state
	    state = mystate | APPLY_SCALE;
	    /* NOBREAK */
	case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE):
	case (HI_SCALE | APPLY_SHEAR | APPLY_TRANSLATE):
	case (HI_SCALE | APPLY_SHEAR):
	case (HI_SCALE | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_SCALE | APPLY_SCALE):
	    // Tx is SCALE, this is anything
	    T00 = Tx.m00;
	    T11 = Tx.m11;
	    if ((mystate & APPLY_SHEAR) != 0) {
		m01 = m01 * T00;
		m10 = m10 * T11;
		if ((mystate & APPLY_SCALE) != 0) {
		    m00 = m00 * T00;
		    m11 = m11 * T11;
		}
	    } else {
		m00 = m00 * T00;
		m11 = m11 * T11;
	    }
	    if ((mystate & APPLY_TRANSLATE) != 0) {
		m02 = m02 * T00;
		m12 = m12 * T11;
	    }
	    type = TYPE_UNKNOWN;
	    return;
	case (HI_SHEAR | APPLY_SHEAR | APPLY_TRANSLATE):
	case (HI_SHEAR | APPLY_SHEAR):
	    mystate = mystate | APPLY_SCALE;
	    /* NOBREAK */
	case (HI_SHEAR | APPLY_TRANSLATE):
	case (HI_SHEAR | APPLY_IDENTITY):
	case (HI_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_SHEAR | APPLY_SCALE):
	    state = mystate ^ APPLY_SHEAR;
	    /* NOBREAK */
	case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE):
	    // Tx is SHEAR, this is anything
	    T01 = Tx.m01;
	    T10 = Tx.m10;

	    M0 = m00;
	    m00 = m10 * T01;
	    m10 = M0 * T10;

	    M0 = m01;
	    m01 = m11 * T01;
	    m11 = M0 * T10;

	    M0 = m02;
	    m02 = m12 * T01;
	    m12 = M0 * T10;
	    type = TYPE_UNKNOWN;
	    return;
	}
	// If Tx has more than one attribute, it is not worth optimizing
	// all of those cases...
	T00 = Tx.m00; T01 = Tx.m01; T02 = Tx.m02;
	T10 = Tx.m10; T11 = Tx.m11; T12 = Tx.m12;
	switch (mystate) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    M0 = m02;
	    M1 = m12;
	    T02 += M0 * T00 + M1 * T01;
	    T12 += M0 * T10 + M1 * T11;

	    /* NOBREAK */
	case (APPLY_SHEAR | APPLY_SCALE):
	    m02 = T02;
	    m12 = T12;

	    M0 = m00;
	    M1 = m10;
	    m00 = M0 * T00 + M1 * T01;
	    m10 = M0 * T10 + M1 * T11;

	    M0 = m01;
	    M1 = m11;
	    m01 = M0 * T00 + M1 * T01;
	    m11 = M0 * T10 + M1 * T11;
	    break;

	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    M0 = m02;
	    M1 = m12;
	    T02 += M0 * T00 + M1 * T01;
	    T12 += M0 * T10 + M1 * T11;

	    /* NOBREAK */
	case (APPLY_SHEAR):
	    m02 = T02;
	    m12 = T12;

	    M0 = m10;
	    m00 = M0 * T01;
	    m10 = M0 * T11;

	    M0 = m01;
	    m01 = M0 * T00;
	    m11 = M0 * T10;
	    break;

	case (APPLY_SCALE | APPLY_TRANSLATE):
	    M0 = m02;
	    M1 = m12;
	    T02 += M0 * T00 + M1 * T01;
	    T12 += M0 * T10 + M1 * T11;

	    /* NOBREAK */
	case (APPLY_SCALE):
	    m02 = T02;
	    m12 = T12;

	    M0 = m00;
	    m00 = M0 * T00;
	    m10 = M0 * T10;

	    M0 = m11;
	    m01 = M0 * T01;
	    m11 = M0 * T11;
	    break;

	case (APPLY_TRANSLATE):
	    M0 = m02;
	    M1 = m12;
	    T02 += M0 * T00 + M1 * T01;
	    T12 += M0 * T10 + M1 * T11;

	    /* NOBREAK */
	case (APPLY_IDENTITY):
	    m02 = T02;
	    m12 = T12;

	    m00 = T00;
	    m10 = T10;

	    m01 = T01;
	    m11 = T11;

	    state = mystate | txstate;
	    type = TYPE_UNKNOWN;
	    return;
	}
	updateState();
    }

    /**
     * Returns an <code>AffineTransform</code> object representing the
     * inverse transformation.
     * The inverse transform Tx' of this transform Tx 
     * maps coordinates transformed by Tx back
     * to their original coordinates.
     * In other words, Tx'(Tx(p)) = p = Tx(Tx'(p)).
     * <p>
     * If this transform maps all coordinates onto a point or a line
     * then it will not have an inverse, since coordinates that do
     * not lie on the destination point or line will not have an inverse
     * mapping.
     * The <code>getDeterminant</code> method can be used to determine if this
     * transform has no inverse, in which case an exception will be
     * thrown if the <code>createInverse</code> method is called.
     * @return a new <code>AffineTransform</code> object representing the
     * inverse transformation.
     * @see #getDeterminant
     * @exception NoninvertibleTransformException
     * if the matrix cannot be inverted.
     * @since 1.2
     */
    public AffineTransform createInverse()
	throws NoninvertibleTransformException
    {
	double det;
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    det = m00 * m11 - m01 * m10;
	    if (Math.abs(det) <= Double.MIN_VALUE) {
		throw new NoninvertibleTransformException("Determinant is "+
							  det);
	    }
	    return new AffineTransform( m11 / det, -m10 / det,
				       -m01 / det,  m00 / det,
				       (m01 * m12 - m11 * m02) / det,
				       (m10 * m02 - m00 * m12) / det,
				       (APPLY_SHEAR |
					APPLY_SCALE |
					APPLY_TRANSLATE));
	case (APPLY_SHEAR | APPLY_SCALE):
	    det = m00 * m11 - m01 * m10;
	    if (Math.abs(det) <= Double.MIN_VALUE) {
		throw new NoninvertibleTransformException("Determinant is "+
							  det);
	    }
	    return new AffineTransform( m11 / det, -m10 / det,
				       -m01 / det,  m00 / det,
				        0.0,        0.0,
				       (APPLY_SHEAR | APPLY_SCALE));
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    if (m01 == 0.0 || m10 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    return new AffineTransform( 0.0,        1.0 / m01,
				        1.0 / m10,  0.0,
				       -m12 / m10, -m02 / m01,
				       (APPLY_SHEAR | APPLY_TRANSLATE));
	case (APPLY_SHEAR):
	    if (m01 == 0.0 || m10 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    return new AffineTransform(0.0,       1.0 / m01,
				       1.0 / m10, 0.0,
				       0.0,       0.0,
				       (APPLY_SHEAR));
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    if (m00 == 0.0 || m11 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    return new AffineTransform( 1.0 / m00,  0.0,
				        0.0,        1.0 / m11,
				       -m02 / m00, -m12 / m11,
				       (APPLY_SCALE | APPLY_TRANSLATE));
	case (APPLY_SCALE):
	    if (m00 == 0.0 || m11 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    return new AffineTransform(1.0 / m00, 0.0,
				       0.0,       1.0 / m11,
				       0.0,       0.0,
				       (APPLY_SCALE));
	case (APPLY_TRANSLATE):
	    return new AffineTransform( 1.0,  0.0,
				        0.0,  1.0,
				       -m02, -m12,
				       (APPLY_TRANSLATE));
	case (APPLY_IDENTITY):
	    return new AffineTransform();
	}

	/* NOTREACHED */
    }

    /**
     * Sets this transform to the inverse of itself.
     * The inverse transform Tx' of this transform Tx 
     * maps coordinates transformed by Tx back
     * to their original coordinates.
     * In other words, Tx'(Tx(p)) = p = Tx(Tx'(p)).
     * <p>
     * If this transform maps all coordinates onto a point or a line
     * then it will not have an inverse, since coordinates that do
     * not lie on the destination point or line will not have an inverse
     * mapping.
     * The <code>getDeterminant</code> method can be used to determine if this
     * transform has no inverse, in which case an exception will be
     * thrown if the <code>invert</code> method is called.
     * @see #getDeterminant
     * @exception NoninvertibleTransformException
     * if the matrix cannot be inverted.
     * @since 1.6
     */
    public void invert()
	throws NoninvertibleTransformException
    {
	double M00, M01, M02;
	double M10, M11, M12;
	double det;
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M01 = m01; M02 = m02;
	    M10 = m10; M11 = m11; M12 = m12;
	    det = M00 * M11 - M01 * M10;
	    if (Math.abs(det) <= Double.MIN_VALUE) {
		throw new NoninvertibleTransformException("Determinant is "+
							  det);
	    }
	    m00 =  M11 / det;
	    m10 = -M10 / det;
	    m01 = -M01 / det;
	    m11 =  M00 / det;
	    m02 = (M01 * M12 - M11 * M02) / det;
	    m12 = (M10 * M02 - M00 * M12) / det;
	    break;
	case (APPLY_SHEAR | APPLY_SCALE):
	    M00 = m00; M01 = m01;
	    M10 = m10; M11 = m11;
	    det = M00 * M11 - M01 * M10;
	    if (Math.abs(det) <= Double.MIN_VALUE) {
		throw new NoninvertibleTransformException("Determinant is "+
							  det);
	    }
	    m00 =  M11 / det;
	    m10 = -M10 / det;
	    m01 = -M01 / det;
	    m11 =  M00 / det;
	    // m02 = 0.0;
	    // m12 = 0.0;
	    break;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    M01 = m01; M02 = m02;
	    M10 = m10; M12 = m12;
	    if (M01 == 0.0 || M10 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    // m00 = 0.0;
	    m10 = 1.0 / M01;
	    m01 = 1.0 / M10;
	    // m11 = 0.0;
	    m02 = -M12 / M10;
	    m12 = -M02 / M01;
	    break;
	case (APPLY_SHEAR):
	    M01 = m01;
	    M10 = m10;
	    if (M01 == 0.0 || M10 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    // m00 = 0.0;
	    m10 = 1.0 / M01;
	    m01 = 1.0 / M10;
	    // m11 = 0.0;
	    // m02 = 0.0;
	    // m12 = 0.0;
	    break;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M02 = m02;
	    M11 = m11; M12 = m12;
	    if (M00 == 0.0 || M11 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    m00 = 1.0 / M00;
	    // m10 = 0.0;
	    // m01 = 0.0;
	    m11 = 1.0 / M11;
	    m02 = -M02 / M00;
	    m12 = -M12 / M11;
	    break;
	case (APPLY_SCALE):
	    M00 = m00;
	    M11 = m11;
	    if (M00 == 0.0 || M11 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    m00 = 1.0 / M00;
	    // m10 = 0.0;
	    // m01 = 0.0;
	    m11 = 1.0 / M11;
	    // m02 = 0.0;
	    // m12 = 0.0;
	    break;
	case (APPLY_TRANSLATE):
	    // m00 = 1.0;
	    // m10 = 0.0;
	    // m01 = 0.0;
	    // m11 = 1.0;
	    m02 = -m02;
	    m12 = -m12;
	    break;
	case (APPLY_IDENTITY):
	    // m00 = 1.0;
	    // m10 = 0.0;
	    // m01 = 0.0;
	    // m11 = 1.0;
	    // m02 = 0.0;
	    // m12 = 0.0;
	    break;
	}
    }

    /**
     * Transforms the specified <code>ptSrc</code> and stores the result
     * in <code>ptDst</code>.
     * If <code>ptDst</code> is <code>null</code>, a new {@link Point2D}
     * object is allocated and then the result of the transformation is
     * stored in this object.
     * In either case, <code>ptDst</code>, which contains the
     * transformed point, is returned for convenience.
     * If <code>ptSrc</code> and <code>ptDst</code> are the same
     * object, the input point is correctly overwritten with
     * the transformed point.
     * @param ptSrc the specified <code>Point2D</code> to be transformed
     * @param ptDst the specified <code>Point2D</code> that stores the
     * result of transforming <code>ptSrc</code>
     * @return the <code>ptDst</code> after transforming
     * <code>ptSrc</code> and stroring the result in <code>ptDst</code>.
     * @since 1.2
     */
    public Point2D transform(Point2D ptSrc, Point2D ptDst) {
	if (ptDst == null) {
	    if (ptSrc instanceof Point2D.Double) {
		ptDst = new Point2D.Double();
	    } else {
		ptDst = new Point2D.Float();
	    }
	}
	// Copy source coords into local variables in case src == dst
	double x = ptSrc.getX();
	double y = ptSrc.getY();
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    ptDst.setLocation(x * m00 + y * m01 + m02,
			      x * m10 + y * m11 + m12);
	    return ptDst;
	case (APPLY_SHEAR | APPLY_SCALE):
	    ptDst.setLocation(x * m00 + y * m01, x * m10 + y * m11);
	    return ptDst;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    ptDst.setLocation(y * m01 + m02, x * m10 + m12);
	    return ptDst;
	case (APPLY_SHEAR):
	    ptDst.setLocation(y * m01, x * m10);
	    return ptDst;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    ptDst.setLocation(x * m00 + m02, y * m11 + m12);
	    return ptDst;
	case (APPLY_SCALE):
	    ptDst.setLocation(x * m00, y * m11);
	    return ptDst;
	case (APPLY_TRANSLATE):
	    ptDst.setLocation(x + m02, y + m12);
	    return ptDst;
	case (APPLY_IDENTITY):
	    ptDst.setLocation(x, y);
	    return ptDst;
	}

	/* NOTREACHED */
    }

    /**
     * Transforms an array of point objects by this transform.
     * If any element of the <code>ptDst</code> array is
     * <code>null</code>, a new <code>Point2D</code> object is allocated
     * and stored into that element before storing the results of the
     * transformation.
     * <p>
     * Note that this method does not take any precautions to
     * avoid problems caused by storing results into <code>Point2D</code>
     * objects that will be used as the source for calculations
     * further down the source array.
     * This method does guarantee that if a specified <code>Point2D</code> 
     * object is both the source and destination for the same single point
     * transform operation then the results will not be stored until
     * the calculations are complete to avoid storing the results on
     * top of the operands.
     * If, however, the destination <code>Point2D</code> object for one
     * operation is the same object as the source <code>Point2D</code> 
     * object for another operation further down the source array then
     * the original coordinates in that point are overwritten before
     * they can be converted.
     * @param ptSrc the array containing the source point objects
     * @param ptDst the array into which the transform point objects are
     * returned
     * @param srcOff the offset to the first point object to be
     * transformed in the source array
     * @param dstOff the offset to the location of the first
     * transformed point object that is stored in the destination array
     * @param numPts the number of point objects to be transformed
     * @since 1.2
     */
    public void transform(Point2D[] ptSrc, int srcOff,
			  Point2D[] ptDst, int dstOff,
			  int numPts) {
	int state = this.state;
        while (--numPts >= 0) {
            // Copy source coords into local variables in case src == dst
	    Point2D src = ptSrc[srcOff++];
            double x = src.getX();
            double y = src.getY();
	    Point2D dst = ptDst[dstOff++];
	    if (dst == null) {
		if (src instanceof Point2D.Double) {
		    dst = new Point2D.Double();
		} else {
		    dst = new Point2D.Float();
		}
		ptDst[dstOff - 1] = dst;
	    }
	    switch (state) {
	    default:
		stateError();
		/* NOTREACHED */
	    case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
		dst.setLocation(x * m00 + y * m01 + m02,
				x * m10 + y * m11 + m12);
		break;
	    case (APPLY_SHEAR | APPLY_SCALE):
		dst.setLocation(x * m00 + y * m01, x * m10 + y * m11);
		break;
	    case (APPLY_SHEAR | APPLY_TRANSLATE):
		dst.setLocation(y * m01 + m02, x * m10 + m12);
		break;
	    case (APPLY_SHEAR):
		dst.setLocation(y * m01, x * m10);
		break;
	    case (APPLY_SCALE | APPLY_TRANSLATE):
		dst.setLocation(x * m00 + m02, y * m11 + m12);
		break;
	    case (APPLY_SCALE):
		dst.setLocation(x * m00, y * m11);
		break;
	    case (APPLY_TRANSLATE):
		dst.setLocation(x + m02, y + m12);
		break;
	    case (APPLY_IDENTITY):
		dst.setLocation(x, y);
		break;
	    }
	}

	/* NOTREACHED */
    }

    /**
     * Transforms an array of floating point coordinates by this transform.
     * The two coordinate array sections can be exactly the same or
     * can be overlapping sections of the same array without affecting the
     * validity of the results.
     * This method ensures that no source coordinates are overwritten by a
     * previous operation before they can be transformed.
     * The coordinates are stored in the arrays starting at the specified
     * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
     * @param srcPts the array containing the source point coordinates.
     * Each point is stored as a pair of x,&nbsp;y coordinates.
     * @param dstPts the array into which the transformed point coordinates
     * are returned.  Each point is stored as a pair of x,&nbsp;y
     * coordinates.
     * @param srcOff the offset to the first point to be transformed
     * in the source array
     * @param dstOff the offset to the location of the first
     * transformed point that is stored in the destination array
     * @param numPts the number of points to be transformed
     * @since 1.2
     */
    public void transform(float[] srcPts, int srcOff,
			  float[] dstPts, int dstOff,
			  int numPts) {
	double M00, M01, M02, M10, M11, M12;	// For caching
	if (dstPts == srcPts &&
	    dstOff > srcOff && dstOff < srcOff + numPts * 2)
	{
	    // If the arrays overlap partially with the destination higher
	    // than the source and we transform the coordinates normally
	    // we would overwrite some of the later source coordinates
	    // with results of previous transformations.
	    // To get around this we use arraycopy to copy the points
	    // to their final destination with correct overwrite
	    // handling and then transform them in place in the new
	    // safer location.
	    System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
	    // srcPts = dstPts;		// They are known to be equal.
	    srcOff = dstOff;
	}
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M01 = m01; M02 = m02;
	    M10 = m10; M11 = m11; M12 = m12;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		double y = srcPts[srcOff++];
		dstPts[dstOff++] = (float) (M00 * x + M01 * y + M02);
		dstPts[dstOff++] = (float) (M10 * x + M11 * y + M12);
	    }
	    return;
	case (APPLY_SHEAR | APPLY_SCALE):
	    M00 = m00; M01 = m01;
	    M10 = m10; M11 = m11;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		double y = srcPts[srcOff++];
		dstPts[dstOff++] = (float) (M00 * x + M01 * y);
		dstPts[dstOff++] = (float) (M10 * x + M11 * y);
	    }
	    return;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    M01 = m01; M02 = m02;
	    M10 = m10; M12 = m12;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++] + M02);
		dstPts[dstOff++] = (float) (M10 * x + M12);
	    }
	    return;
	case (APPLY_SHEAR):
	    M01 = m01; M10 = m10;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++]);
		dstPts[dstOff++] = (float) (M10 * x);
	    }
	    return;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M02 = m02;
	    M11 = m11; M12 = m12;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++] + M02);
		dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++] + M12);
	    }
	    return;
	case (APPLY_SCALE):
	    M00 = m00; M11 = m11;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++]);
		dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++]);
	    }
	    return;
	case (APPLY_TRANSLATE):
	    M02 = m02; M12 = m12;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = (float) (srcPts[srcOff++] + M02);
		dstPts[dstOff++] = (float) (srcPts[srcOff++] + M12);
	    }
	    return;
	case (APPLY_IDENTITY):
	    if (srcPts != dstPts || srcOff != dstOff) {
		System.arraycopy(srcPts, srcOff, dstPts, dstOff,
				 numPts * 2);
	    }
	    return;
	}

	/* NOTREACHED */
    }

    /**
     * Transforms an array of double precision coordinates by this transform.
     * The two coordinate array sections can be exactly the same or
     * can be overlapping sections of the same array without affecting the
     * validity of the results.
     * This method ensures that no source coordinates are
     * overwritten by a previous operation before they can be transformed.
     * The coordinates are stored in the arrays starting at the indicated
     * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
     * @param srcPts the array containing the source point coordinates.
     * Each point is stored as a pair of x,&nbsp;y coordinates.
     * @param dstPts the array into which the transformed point
     * coordinates are returned.  Each point is stored as a pair of
     * x,&nbsp;y coordinates.
     * @param srcOff the offset to the first point to be transformed
     * in the source array
     * @param dstOff the offset to the location of the first
     * transformed point that is stored in the destination array
     * @param numPts the number of point objects to be transformed
     * @since 1.2
     */
    public void transform(double[] srcPts, int srcOff,
			  double[] dstPts, int dstOff,
			  int numPts) {
	double M00, M01, M02, M10, M11, M12;	// For caching
	if (dstPts == srcPts &&
	    dstOff > srcOff && dstOff < srcOff + numPts * 2)
	{
	    // If the arrays overlap partially with the destination higher
	    // than the source and we transform the coordinates normally
	    // we would overwrite some of the later source coordinates
	    // with results of previous transformations.
	    // To get around this we use arraycopy to copy the points
	    // to their final destination with correct overwrite
	    // handling and then transform them in place in the new
	    // safer location.
	    System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
	    // srcPts = dstPts;		// They are known to be equal.
	    srcOff = dstOff;
	}
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M01 = m01; M02 = m02;
	    M10 = m10; M11 = m11; M12 = m12;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		double y = srcPts[srcOff++];
		dstPts[dstOff++] = M00 * x + M01 * y + M02;
		dstPts[dstOff++] = M10 * x + M11 * y + M12;
	    }
	    return;
	case (APPLY_SHEAR | APPLY_SCALE):
	    M00 = m00; M01 = m01;
	    M10 = m10; M11 = m11;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		double y = srcPts[srcOff++];
		dstPts[dstOff++] = M00 * x + M01 * y;
		dstPts[dstOff++] = M10 * x + M11 * y;
	    }
	    return;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    M01 = m01; M02 = m02;
	    M10 = m10; M12 = m12;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		dstPts[dstOff++] = M01 * srcPts[srcOff++] + M02;
		dstPts[dstOff++] = M10 * x + M12;
	    }
	    return;
	case (APPLY_SHEAR):
	    M01 = m01; M10 = m10;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		dstPts[dstOff++] = M01 * srcPts[srcOff++];
		dstPts[dstOff++] = M10 * x;
	    }
	    return;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M02 = m02;
	    M11 = m11; M12 = m12;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = M00 * srcPts[srcOff++] + M02;
		dstPts[dstOff++] = M11 * srcPts[srcOff++] + M12;
	    }
	    return;
	case (APPLY_SCALE):
	    M00 = m00; M11 = m11;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = M00 * srcPts[srcOff++];
		dstPts[dstOff++] = M11 * srcPts[srcOff++];
	    }
	    return;
	case (APPLY_TRANSLATE):
	    M02 = m02; M12 = m12;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = srcPts[srcOff++] + M02;
		dstPts[dstOff++] = srcPts[srcOff++] + M12;
	    }
	    return;
	case (APPLY_IDENTITY):
	    if (srcPts != dstPts || srcOff != dstOff) {
		System.arraycopy(srcPts, srcOff, dstPts, dstOff,
				 numPts * 2);
	    }
	    return;
	}

	/* NOTREACHED */
    }

    /**
     * Transforms an array of floating point coordinates by this transform
     * and stores the results into an array of doubles.
     * The coordinates are stored in the arrays starting at the specified
     * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
     * @param srcPts the array containing the source point coordinates.
     * Each point is stored as a pair of x,&nbsp;y coordinates.
     * @param dstPts the array into which the transformed point coordinates
     * are returned.  Each point is stored as a pair of x,&nbsp;y
     * coordinates.
     * @param srcOff the offset to the first point to be transformed
     * in the source array
     * @param dstOff the offset to the location of the first
     * transformed point that is stored in the destination array
     * @param numPts the number of points to be transformed
     * @since 1.2
     */
    public void transform(float[] srcPts, int srcOff,
			  double[] dstPts, int dstOff,
			  int numPts) {
	double M00, M01, M02, M10, M11, M12;	// For caching
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M01 = m01; M02 = m02;
	    M10 = m10; M11 = m11; M12 = m12;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		double y = srcPts[srcOff++];
		dstPts[dstOff++] = M00 * x + M01 * y + M02;
		dstPts[dstOff++] = M10 * x + M11 * y + M12;
	    }
	    return;
	case (APPLY_SHEAR | APPLY_SCALE):
	    M00 = m00; M01 = m01;
	    M10 = m10; M11 = m11;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		double y = srcPts[srcOff++];
		dstPts[dstOff++] = M00 * x + M01 * y;
		dstPts[dstOff++] = M10 * x + M11 * y;
	    }
	    return;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    M01 = m01; M02 = m02;
	    M10 = m10; M12 = m12;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		dstPts[dstOff++] = M01 * srcPts[srcOff++] + M02;
		dstPts[dstOff++] = M10 * x + M12;
	    }
	    return;
	case (APPLY_SHEAR):
	    M01 = m01; M10 = m10;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		dstPts[dstOff++] = M01 * srcPts[srcOff++];
		dstPts[dstOff++] = M10 * x;
	    }
	    return;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M02 = m02;
	    M11 = m11; M12 = m12;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = M00 * srcPts[srcOff++] + M02;
		dstPts[dstOff++] = M11 * srcPts[srcOff++] + M12;
	    }
	    return;
	case (APPLY_SCALE):
	    M00 = m00; M11 = m11;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = M00 * srcPts[srcOff++];
		dstPts[dstOff++] = M11 * srcPts[srcOff++];
	    }
	    return;
	case (APPLY_TRANSLATE):
	    M02 = m02; M12 = m12;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = srcPts[srcOff++] + M02;
		dstPts[dstOff++] = srcPts[srcOff++] + M12;
	    }
	    return;
	case (APPLY_IDENTITY):
	    while (--numPts >= 0) {
		dstPts[dstOff++] = srcPts[srcOff++];
		dstPts[dstOff++] = srcPts[srcOff++];
	    }
	    return;
	}

	/* NOTREACHED */
    }

    /**
     * Transforms an array of double precision coordinates by this transform
     * and stores the results into an array of floats.
     * The coordinates are stored in the arrays starting at the specified
     * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
     * @param srcPts the array containing the source point coordinates.
     * Each point is stored as a pair of x,&nbsp;y coordinates.
     * @param dstPts the array into which the transformed point
     * coordinates are returned.  Each point is stored as a pair of 
     * x,&nbsp;y coordinates.
     * @param srcOff the offset to the first point to be transformed
     * in the source array
     * @param dstOff the offset to the location of the first
     * transformed point that is stored in the destination array
     * @param numPts the number of point objects to be transformed
     * @since 1.2
     */
    public void transform(double[] srcPts, int srcOff,
			  float[] dstPts, int dstOff,
			  int numPts) {
	double M00, M01, M02, M10, M11, M12;	// For caching
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M01 = m01; M02 = m02;
	    M10 = m10; M11 = m11; M12 = m12;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		double y = srcPts[srcOff++];
		dstPts[dstOff++] = (float) (M00 * x + M01 * y + M02);
		dstPts[dstOff++] = (float) (M10 * x + M11 * y + M12);
	    }
	    return;
	case (APPLY_SHEAR | APPLY_SCALE):
	    M00 = m00; M01 = m01;
	    M10 = m10; M11 = m11;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		double y = srcPts[srcOff++];
		dstPts[dstOff++] = (float) (M00 * x + M01 * y);
		dstPts[dstOff++] = (float) (M10 * x + M11 * y);
	    }
	    return;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    M01 = m01; M02 = m02;
	    M10 = m10; M12 = m12;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++] + M02);
		dstPts[dstOff++] = (float) (M10 * x + M12);
	    }
	    return;
	case (APPLY_SHEAR):
	    M01 = m01; M10 = m10;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++]);
		dstPts[dstOff++] = (float) (M10 * x);
	    }
	    return;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M02 = m02;
	    M11 = m11; M12 = m12;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++] + M02);
		dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++] + M12);
	    }
	    return;
	case (APPLY_SCALE):
	    M00 = m00; M11 = m11;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++]);
		dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++]);
	    }
	    return;
	case (APPLY_TRANSLATE):
	    M02 = m02; M12 = m12;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = (float) (srcPts[srcOff++] + M02);
		dstPts[dstOff++] = (float) (srcPts[srcOff++] + M12);
	    }
	    return;
	case (APPLY_IDENTITY):
	    while (--numPts >= 0) {
		dstPts[dstOff++] = (float) (srcPts[srcOff++]);
		dstPts[dstOff++] = (float) (srcPts[srcOff++]);
	    }
	    return;
	}

	/* NOTREACHED */
    }

    /**
     * Inverse transforms the specified <code>ptSrc</code> and stores the
     * result in <code>ptDst</code>.
     * If <code>ptDst</code> is <code>null</code>, a new
     * <code>Point2D</code> object is allocated and then the result of the
     * transform is stored in this object.
     * In either case, <code>ptDst</code>, which contains the transformed
     * point, is returned for convenience.
     * If <code>ptSrc</code> and <code>ptDst</code> are the same
     * object, the input point is correctly overwritten with the
     * transformed point.
     * @param ptSrc the point to be inverse transformed
     * @param ptDst the resulting transformed point
     * @return <code>ptDst</code>, which contains the result of the 
     * inverse transform.
     * @exception NoninvertibleTransformException  if the matrix cannot be
     *                                         inverted.
     * @since 1.2
     */
    public Point2D inverseTransform(Point2D ptSrc, Point2D ptDst)
	throws NoninvertibleTransformException
    {
	if (ptDst == null) {
	    if (ptSrc instanceof Point2D.Double) {
		ptDst = new Point2D.Double();
	    } else {
		ptDst = new Point2D.Float();
	    }
	}
	// Copy source coords into local variables in case src == dst
	double x = ptSrc.getX();
	double y = ptSrc.getY();
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    x -= m02;
	    y -= m12;
	    /* NOBREAK */
	case (APPLY_SHEAR | APPLY_SCALE):
	    double det = m00 * m11 - m01 * m10;
	    if (Math.abs(det) <= Double.MIN_VALUE) {
		throw new NoninvertibleTransformException("Determinant is "+
							  det);
	    }
	    ptDst.setLocation((x * m11 - y * m01) / det,
			      (y * m00 - x * m10) / det);
	    return ptDst;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    x -= m02;
	    y -= m12;
	    /* NOBREAK */
	case (APPLY_SHEAR):
	    if (m01 == 0.0 || m10 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    ptDst.setLocation(y / m10, x / m01);
	    return ptDst;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    x -= m02;
	    y -= m12;
	    /* NOBREAK */
	case (APPLY_SCALE):
	    if (m00 == 0.0 || m11 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    ptDst.setLocation(x / m00, y / m11);
	    return ptDst;
	case (APPLY_TRANSLATE):
	    ptDst.setLocation(x - m02, y - m12);
	    return ptDst;
	case (APPLY_IDENTITY):
	    ptDst.setLocation(x, y);
	    return ptDst;
	}

	/* NOTREACHED */
    }

    /**
     * Inverse transforms an array of double precision coordinates by
     * this transform.  
     * The two coordinate array sections can be exactly the same or
     * can be overlapping sections of the same array without affecting the
     * validity of the results.
     * This method ensures that no source coordinates are
     * overwritten by a previous operation before they can be transformed.
     * The coordinates are stored in the arrays starting at the specified
     * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
     * @param srcPts the array containing the source point coordinates.
     * Each point is stored as a pair of x,&nbsp;y coordinates.
     * @param dstPts the array into which the transformed point
     * coordinates are returned.  Each point is stored as a pair of 
     * x,&nbsp;y coordinates.
     * @param srcOff the offset to the first point to be transformed
     * in the source array
     * @param dstOff the offset to the location of the first
     * transformed point that is stored in the destination array
     * @param numPts the number of point objects to be transformed
     * @exception NoninvertibleTransformException  if the matrix cannot be
     *                                         inverted.
     * @since 1.2
     */
    public void inverseTransform(double[] srcPts, int srcOff,
                                 double[] dstPts, int dstOff,
                                 int numPts)
	throws NoninvertibleTransformException
    {
	double M00, M01, M02, M10, M11, M12;	// For caching
	double det;
	if (dstPts == srcPts &&
	    dstOff > srcOff && dstOff < srcOff + numPts * 2)
	{
	    // If the arrays overlap partially with the destination higher
	    // than the source and we transform the coordinates normally
	    // we would overwrite some of the later source coordinates
	    // with results of previous transformations.
	    // To get around this we use arraycopy to copy the points
	    // to their final destination with correct overwrite
	    // handling and then transform them in place in the new
	    // safer location.
	    System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
	    // srcPts = dstPts;		// They are known to be equal.
	    srcOff = dstOff;
	}
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M01 = m01; M02 = m02;
	    M10 = m10; M11 = m11; M12 = m12;
	    det = M00 * M11 - M01 * M10;
	    if (Math.abs(det) <= Double.MIN_VALUE) {
		throw new NoninvertibleTransformException("Determinant is "+
							  det);
	    }
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++] - M02;
		double y = srcPts[srcOff++] - M12;
		dstPts[dstOff++] = (x * M11 - y * M01) / det;
		dstPts[dstOff++] = (y * M00 - x * M10) / det;
	    }
	    return;
	case (APPLY_SHEAR | APPLY_SCALE):
	    M00 = m00; M01 = m01;
	    M10 = m10; M11 = m11;
	    det = M00 * M11 - M01 * M10;
	    if (Math.abs(det) <= Double.MIN_VALUE) {
		throw new NoninvertibleTransformException("Determinant is "+
							  det);
	    }
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		double y = srcPts[srcOff++];
		dstPts[dstOff++] = (x * M11 - y * M01) / det;
		dstPts[dstOff++] = (y * M00 - x * M10) / det;
	    }
	    return;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	    M01 = m01; M02 = m02;
	    M10 = m10; M12 = m12;
	    if (M01 == 0.0 || M10 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++] - M02;
		dstPts[dstOff++] = (srcPts[srcOff++] - M12) / M10;
		dstPts[dstOff++] = x / M01;
	    }
	    return;
	case (APPLY_SHEAR):
	    M01 = m01; M10 = m10;
	    if (M01 == 0.0 || M10 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		dstPts[dstOff++] = srcPts[srcOff++] / M10;
		dstPts[dstOff++] = x / M01;
	    }
	    return;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	    M00 = m00; M02 = m02;
	    M11 = m11; M12 = m12;
	    if (M00 == 0.0 || M11 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    while (--numPts >= 0) {
		dstPts[dstOff++] = (srcPts[srcOff++] - M02) / M00;
		dstPts[dstOff++] = (srcPts[srcOff++] - M12) / M11;
	    }
	    return;
	case (APPLY_SCALE):
	    M00 = m00; M11 = m11;
	    if (M00 == 0.0 || M11 == 0.0) {
		throw new NoninvertibleTransformException("Determinant is 0");
	    }
	    while (--numPts >= 0) {
		dstPts[dstOff++] = srcPts[srcOff++] / M00;
		dstPts[dstOff++] = srcPts[srcOff++] / M11;
	    }
	    return;
	case (APPLY_TRANSLATE):
	    M02 = m02; M12 = m12;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = srcPts[srcOff++] - M02;
		dstPts[dstOff++] = srcPts[srcOff++] - M12;
	    }
	    return;
	case (APPLY_IDENTITY):
	    if (srcPts != dstPts || srcOff != dstOff) {
		System.arraycopy(srcPts, srcOff, dstPts, dstOff,
				 numPts * 2);
	    }
	    return;
	}

	/* NOTREACHED */
    }

    /**
     * Transforms the relative distance vector specified by 
     * <code>ptSrc</code> and stores the result in <code>ptDst</code>.
     * A relative distance vector is transformed without applying the
     * translation components of the affine transformation matrix
     * using the following equations:
     * <pre>
     *	[  x' ]   [  m00  m01 (m02) ] [  x  ]   [ m00x + m01y ]
     *	[  y' ] = [  m10  m11 (m12) ] [  y  ] = [ m10x + m11y ]
     *	[ (1) ]   [  (0)  (0) ( 1 ) ] [ (1) ]   [     (1)     ]
     * </pre>
     * If <code>ptDst</code> is <code>null</code>, a new
     * <code>Point2D</code> object is allocated and then the result of the
     * transform is stored in this object.
     * In either case, <code>ptDst</code>, which contains the
     * transformed point, is returned for convenience.
     * If <code>ptSrc</code> and <code>ptDst</code> are the same object,
     * the input point is correctly overwritten with the transformed
     * point.
     * @param ptSrc the distance vector to be delta transformed
     * @param ptDst the resulting transformed distance vector
     * @return <code>ptDst</code>, which contains the result of the
     * transformation.
     * @since 1.2
     */
    public Point2D deltaTransform(Point2D ptSrc, Point2D ptDst) {
	if (ptDst == null) {
	    if (ptSrc instanceof Point2D.Double) {
		ptDst = new Point2D.Double();
	    } else {
		ptDst = new Point2D.Float();
	    }
	}
	// Copy source coords into local variables in case src == dst
	double x = ptSrc.getX();
	double y = ptSrc.getY();
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SHEAR | APPLY_SCALE):
	    ptDst.setLocation(x * m00 + y * m01, x * m10 + y * m11);
	    return ptDst;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	case (APPLY_SHEAR):
	    ptDst.setLocation(y * m01, x * m10);
	    return ptDst;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SCALE):
	    ptDst.setLocation(x * m00, y * m11);
	    return ptDst;
	case (APPLY_TRANSLATE):
	case (APPLY_IDENTITY):
	    ptDst.setLocation(x, y);
	    return ptDst;
	}

	/* NOTREACHED */
    }

    /**
     * Transforms an array of relative distance vectors by this
     * transform.
     * A relative distance vector is transformed without applying the
     * translation components of the affine transformation matrix
     * using the following equations:
     * <pre>
     *	[  x' ]   [  m00  m01 (m02) ] [  x  ]   [ m00x + m01y ]
     *	[  y' ] = [  m10  m11 (m12) ] [  y  ] = [ m10x + m11y ]
     *	[ (1) ]   [  (0)  (0) ( 1 ) ] [ (1) ]   [     (1)     ]
     * </pre>
     * The two coordinate array sections can be exactly the same or
     * can be overlapping sections of the same array without affecting the
     * validity of the results.
     * This method ensures that no source coordinates are
     * overwritten by a previous operation before they can be transformed.
     * The coordinates are stored in the arrays starting at the indicated
     * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
     * @param srcPts the array containing the source distance vectors.
     * Each vector is stored as a pair of relative x,&nbsp;y coordinates.
     * @param dstPts the array into which the transformed distance vectors
     * are returned.  Each vector is stored as a pair of relative
     * x,&nbsp;y coordinates.
     * @param srcOff the offset to the first vector to be transformed
     * in the source array
     * @param dstOff the offset to the location of the first
     * transformed vector that is stored in the destination array
     * @param numPts the number of vector coordinate pairs to be
     * transformed
     * @since 1.2
     */
    public void deltaTransform(double[] srcPts, int srcOff,
			       double[] dstPts, int dstOff,
			       int numPts) {
	double M00, M01, M10, M11;	// For caching
	if (dstPts == srcPts &&
	    dstOff > srcOff && dstOff < srcOff + numPts * 2)
	{
	    // If the arrays overlap partially with the destination higher
	    // than the source and we transform the coordinates normally
	    // we would overwrite some of the later source coordinates
	    // with results of previous transformations.
	    // To get around this we use arraycopy to copy the points
	    // to their final destination with correct overwrite
	    // handling and then transform them in place in the new
	    // safer location.
	    System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
	    // srcPts = dstPts;		// They are known to be equal.
	    srcOff = dstOff;
	}
	switch (state) {
	default:
	    stateError();
	    /* NOTREACHED */
	case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SHEAR | APPLY_SCALE):
	    M00 = m00; M01 = m01;
	    M10 = m10; M11 = m11;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		double y = srcPts[srcOff++];
		dstPts[dstOff++] = x * M00 + y * M01;
		dstPts[dstOff++] = x * M10 + y * M11;
	    }
	    return;
	case (APPLY_SHEAR | APPLY_TRANSLATE):
	case (APPLY_SHEAR):
	    M01 = m01; M10 = m10;
	    while (--numPts >= 0) {
		double x = srcPts[srcOff++];
		dstPts[dstOff++] = srcPts[srcOff++] * M01;
		dstPts[dstOff++] = x * M10;
	    }
	    return;
	case (APPLY_SCALE | APPLY_TRANSLATE):
	case (APPLY_SCALE):
	    M00 = m00; M11 = m11;
	    while (--numPts >= 0) {
		dstPts[dstOff++] = srcPts[srcOff++] * M00;
		dstPts[dstOff++] = srcPts[srcOff++] * M11;
	    }
	    return;
	case (APPLY_TRANSLATE):
	case (APPLY_IDENTITY):
	    if (srcPts != dstPts || srcOff != dstOff) {
		System.arraycopy(srcPts, srcOff, dstPts, dstOff,
				 numPts * 2);
	    }
	    return;
	}

	/* NOTREACHED */
    }

    /**
     * Returns a new {@link Shape} object defined by the geometry of the
     * specified <code>Shape</code> after it has been transformed by
     * this transform.
     * @param pSrc the specified <code>Shape</code> object to be
     * transformed by this transform.
     * @return a new <code>Shape</code> object that defines the geometry
     * of the transformed <code>Shape</code>, or null if {@code pSrc} is null.
     * @since 1.2
     */
    public Shape createTransformedShape(Shape pSrc) {
        if (pSrc == null) {
            return null;
        }
        return new Path2D.Double(pSrc, this);
    }

    // Round values to sane precision for printing
    // Note that Math.sin(Math.PI) has an error of about 10^-16
    private static double _matround(double matval) {
	return Math.rint(matval * 1E15) / 1E15;
    }

    /**
     * Returns a <code>String</code> that represents the value of this
     * {@link Object}.
     * @return a <code>String</code> representing the value of this
     * <code>Object</code>.
     * @since 1.2
     */
    public String toString() {
	return ("AffineTransform[["
		+ _matround(m00) + ", "
		+ _matround(m01) + ", "
		+ _matround(m02) + "], ["
		+ _matround(m10) + ", "
		+ _matround(m11) + ", "
		+ _matround(m12) + "]]");
    }

    /**
     * Returns <code>true</code> if this <code>AffineTransform</code> is
     * an identity transform.
     * @return <code>true</code> if this <code>AffineTransform</code> is
     * an identity transform; <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean isIdentity() {
        return (state == APPLY_IDENTITY || (getType() == TYPE_IDENTITY));
    }

    /**
     * Returns a copy of this <code>AffineTransform</code> object.
     * @return an <code>Object</code> that is a copy of this
     * <code>AffineTransform</code> object.
     * @since 1.2
     */
    public Object clone() {
	try {
	    return super.clone();
	} catch (CloneNotSupportedException e) { 
	    // this shouldn't happen, since we are Cloneable
	    throw new InternalError();
	}
    }

    /**
     * Returns the hashcode for this transform.
     * @return      a hash code for this transform.
     * @since 1.2
     */
    public int hashCode() {
	long bits = Double.doubleToLongBits(m00);
	bits = bits * 31 + Double.doubleToLongBits(m01);
	bits = bits * 31 + Double.doubleToLongBits(m02);
	bits = bits * 31 + Double.doubleToLongBits(m10);
	bits = bits * 31 + Double.doubleToLongBits(m11);
	bits = bits * 31 + Double.doubleToLongBits(m12);
	return (((int) bits) ^ ((int) (bits >> 32)));
    }

    /**
     * Returns <code>true</code> if this <code>AffineTransform</code> 
     * represents the same affine coordinate transform as the specified
     * argument.
     * @param obj the <code>Object</code> to test for equality with this
     * <code>AffineTransform</code>
     * @return <code>true</code> if <code>obj</code> equals this
     * <code>AffineTransform</code> object; <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean equals(Object obj) {
        if (!(obj instanceof AffineTransform)) {
            return false;
        }

        AffineTransform a = (AffineTransform)obj;

	return ((m00 == a.m00) && (m01 == a.m01) && (m02 == a.m02) &&
		(m10 == a.m10) && (m11 == a.m11) && (m12 == a.m12));
    }

    /* Serialization support.  A readObject method is neccessary because
     * the state field is part of the implementation of this particular
     * AffineTransform and not part of the public specification.  The
     * state variable's value needs to be recalculated on the fly by the
     * readObject method as it is in the 6-argument matrix constructor.
     */

    /*
     * JDK 1.2 serialVersionUID 
     */
    private static final long serialVersionUID = 1330973210523860834L;

    private void writeObject(java.io.ObjectOutputStream s)
	throws java.lang.ClassNotFoundException, java.io.IOException
    {
	s.defaultWriteObject();
    }

    private void readObject(java.io.ObjectInputStream s)
	throws java.lang.ClassNotFoundException, java.io.IOException
    {
	s.defaultReadObject();
	updateState();
    }
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar