API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.awt.geom. Area View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

/*
 * @(#)Area.java	1.21 06/02/24
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.awt.geom;

import java.awt.Shape;
import java.awt.Rectangle;
import java.util.Vector;
import java.util.Enumeration;
import java.util.NoSuchElementException;
import sun.awt.geom.Curve;
import sun.awt.geom.Crossings;
import sun.awt.geom.AreaOp;

/**
 * An <code>Area</code> object stores and manipulates a
 * resolution-independent description of an enclosed area of
 * 2-dimensional space.
 * <code>Area</code> objects can be transformed and can perform
 * various Constructive Area Geometry (CAG) operations when combined
 * with other <code>Area</code> objects.
 * The CAG operations include area
 * {@link #add addition}, {@link #subtract subtraction},
 * {@link #intersect intersection}, and {@link #exclusiveOr exclusive or}.
 * See the linked method documentation for examples of the various
 * operations.
 * <p>
 * The <code>Area</code> class implements the <code>Shape</code>
 * interface and provides full support for all of its hit-testing
 * and path iteration facilities, but an <code>Area</code> is more
 * specific than a generalized path in a number of ways:
 * <ul>
 * <li>Only closed paths and sub-paths are stored.
 *     <code>Area</code> objects constructed from unclosed paths
 *     are implicitly closed during construction as if those paths
 *     had been filled by the <code>Graphics2D.fill</code> method.
 * <li>The interiors of the individual stored sub-paths are all
 *     non-empty and non-overlapping.  Paths are decomposed during
 *     construction into separate component non-overlapping parts,
 *     empty pieces of the path are discarded, and then these
 *     non-empty and non-overlapping properties are maintained
 *     through all subsequent CAG operations.  Outlines of different
 *     component sub-paths may touch each other, as long as they
 *     do not cross so that their enclosed areas overlap.
 * <li>The geometry of the path describing the outline of the
 *     <code>Area</code> resembles the path from which it was
 *     constructed only in that it describes the same enclosed
 *     2-dimensional area, but may use entirely different types
 *     and ordering of the path segments to do so.
 * </ul>
 * Interesting issues which are not always obvious when using
 * the <code>Area</code> include:
 * <ul>
 * <li>Creating an <code>Area</code> from an unclosed (open)
 *     <code>Shape</code> results in a closed outline in the
 *     <code>Area</code> object.
 * <li>Creating an <code>Area</code> from a <code>Shape</code>
 *     which encloses no area (even when "closed") produces an
 *     empty <code>Area</code>.  A common example of this issue
 *     is that producing an <code>Area</code> from a line will
 *     be empty since the line encloses no area.  An empty
 *     <code>Area</code> will iterate no geometry in its
 *     <code>PathIterator</code> objects.
 * <li>A self-intersecting <code>Shape</code> may be split into
 *     two (or more) sub-paths each enclosing one of the
 *     non-intersecting portions of the original path.
 * <li>An <code>Area</code> may take more path segments to
 *     describe the same geometry even when the original
 *     outline is simple and obvious.  The analysis that the
 *     <code>Area</code> class must perform on the path may
 *     not reflect the same concepts of "simple and obvious"
 *     as a human being perceives.
 * </ul>
 *
 * @since 1.2
 */
public class Area implements Shape, Cloneable {
    private static Vector EmptyCurves = new Vector();

    private Vector curves;

    /**
     * Default constructor which creates an empty area.
     * @since 1.2
     */
    public Area() {
	curves = EmptyCurves;
    }

    /**
     * The <code>Area</code> class creates an area geometry from the
     * specified {@link Shape} object.  The geometry is explicitly
     * closed, if the <code>Shape</code> is not already closed.  The
     * fill rule (even-odd or winding) specified by the geometry of the
     * <code>Shape</code> is used to determine the resulting enclosed area.
     * @param s  the <code>Shape</code> from which the area is constructed
     * @throws NullPointerException if <code>s</code> is null
     * @since 1.2
     */
    public Area(Shape s) {
	if (s instanceof Area) {
	    curves = ((Area) s).curves;
	} else {
            curves = pathToCurves(s.getPathIterator(null));
        }
    }

    private static Vector pathToCurves(PathIterator pi) {
	Vector curves = new Vector();
	int windingRule = pi.getWindingRule();
	// coords array is big enough for holding:
	//     coordinates returned from currentSegment (6)
	//     OR
	//         two subdivided quadratic curves (2+4+4=10)
	//         AND
	//             0-1 horizontal splitting parameters
	//             OR
	//             2 parametric equation derivative coefficients
	//     OR
	//         three subdivided cubic curves (2+6+6+6=20)
	//         AND
	//             0-2 horizontal splitting parameters
	//             OR
	//             3 parametric equation derivative coefficients
	double coords[] = new double[23];
	double movx = 0, movy = 0;
	double curx = 0, cury = 0;
	double newx, newy;
	while (!pi.isDone()) {
	    switch (pi.currentSegment(coords)) {
	    case PathIterator.SEG_MOVETO:
		Curve.insertLine(curves, curx, cury, movx, movy);
		curx = movx = coords[0];
		cury = movy = coords[1];
		Curve.insertMove(curves, movx, movy);
		break;
	    case PathIterator.SEG_LINETO:
		newx = coords[0];
		newy = coords[1];
		Curve.insertLine(curves, curx, cury, newx, newy);
		curx = newx;
		cury = newy;
		break;
	    case PathIterator.SEG_QUADTO:
		newx = coords[2];
		newy = coords[3];
		Curve.insertQuad(curves, curx, cury, coords);
		curx = newx;
		cury = newy;
		break;
	    case PathIterator.SEG_CUBICTO:
		newx = coords[4];
		newy = coords[5];
		Curve.insertCubic(curves, curx, cury, coords);
		curx = newx;
		cury = newy;
		break;
	    case PathIterator.SEG_CLOSE:
		Curve.insertLine(curves, curx, cury, movx, movy);
		curx = movx;
		cury = movy;
		break;
	    }
	    pi.next();
	}
	Curve.insertLine(curves, curx, cury, movx, movy);
	AreaOp operator;
	if (windingRule == PathIterator.WIND_EVEN_ODD) {
	    operator = new AreaOp.EOWindOp();
	} else {
	    operator = new AreaOp.NZWindOp();
	}
	return operator.calculate(curves, EmptyCurves);
    }

    /**
     * Adds the shape of the specified <code>Area</code> to the
     * shape of this <code>Area</code>.
     * The resulting shape of this <code>Area</code> will include
     * the union of both shapes, or all areas that were contained
     * in either this or the specified <code>Area</code>.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.add(a2);
     *
     *        a1(before)     +         a2         =     a1(after)
     *
     *     ################     ################     ################
     *     ##############         ##############     ################
     *     ############             ############     ################
     *     ##########                 ##########     ################
     *     ########                     ########     ################
     *     ######                         ######     ######    ######
     *     ####                             ####     ####        ####
     *     ##                                 ##     ##            ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be added to the
     *          current shape
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void add(Area rhs) {
	curves = new AreaOp.AddOp().calculate(this.curves, rhs.curves);
	invalidateBounds();
    }

    /**
     * Subtracts the shape of the specified <code>Area</code> from the 
     * shape of this <code>Area</code>.
     * The resulting shape of this <code>Area</code> will include
     * areas that were contained only in this <code>Area</code>
     * and not in the specified <code>Area</code>.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.subtract(a2);
     *
     *        a1(before)     -         a2         =     a1(after)
     *
     *     ################     ################
     *     ##############         ##############     ##
     *     ############             ############     ####
     *     ##########                 ##########     ######
     *     ########                     ########     ########
     *     ######                         ######     ######
     *     ####                             ####     ####
     *     ##                                 ##     ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be subtracted from the 
     *		current shape
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void subtract(Area rhs) {
	curves = new AreaOp.SubOp().calculate(this.curves, rhs.curves);
	invalidateBounds();
    }

    /**
     * Sets the shape of this <code>Area</code> to the intersection of 
     * its current shape and the shape of the specified <code>Area</code>.
     * The resulting shape of this <code>Area</code> will include
     * only areas that were contained in both this <code>Area</code>
     * and also in the specified <code>Area</code>.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.intersect(a2);
     *
     *      a1(before)   intersect     a2         =     a1(after)
     *
     *     ################     ################     ################
     *     ##############         ##############       ############
     *     ############             ############         ########
     *     ##########                 ##########           ####
     *     ########                     ########
     *     ######                         ######
     *     ####                             ####
     *     ##                                 ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be intersected with this
     *		<code>Area</code>
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void intersect(Area rhs) {
	curves = new AreaOp.IntOp().calculate(this.curves, rhs.curves);
	invalidateBounds();
    }

    /**
     * Sets the shape of this <code>Area</code> to be the combined area
     * of its current shape and the shape of the specified <code>Area</code>, 
     * minus their intersection.
     * The resulting shape of this <code>Area</code> will include
     * only areas that were contained in either this <code>Area</code>
     * or in the specified <code>Area</code>, but not in both.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.exclusiveOr(a2);
     *
     *        a1(before)    xor        a2         =     a1(after)
     *
     *     ################     ################
     *     ##############         ##############     ##            ##
     *     ############             ############     ####        ####
     *     ##########                 ##########     ######    ######
     *     ########                     ########     ################
     *     ######                         ######     ######    ######
     *     ####                             ####     ####        ####
     *     ##                                 ##     ##            ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be exclusive ORed with this 
     *		<code>Area</code>.
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void exclusiveOr(Area rhs) {
	curves = new AreaOp.XorOp().calculate(this.curves, rhs.curves);
	invalidateBounds();
    }

    /**
     * Removes all of the geometry from this <code>Area</code> and
     * restores it to an empty area.
     * @since 1.2
     */
    public void reset() {
	curves = new Vector();
	invalidateBounds();
    }

    /**
     * Tests whether this <code>Area</code> object encloses any area.
     * @return    <code>true</code> if this <code>Area</code> object
     * represents an empty area; <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean isEmpty() {
	return (curves.size() == 0);
    }

    /**
     * Tests whether this <code>Area</code> consists entirely of
     * straight edged polygonal geometry.
     * @return    <code>true</code> if the geometry of this
     * <code>Area</code> consists entirely of line segments;
     * <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean isPolygonal() {
	Enumeration enum_ = curves.elements();
	while (enum_.hasMoreElements()) {
	    if (((Curve) enum_.nextElement()).getOrder() > 1) {
		return false;
	    }
	}
	return true;
    }

    /**
     * Tests whether this <code>Area</code> is rectangular in shape.
     * @return    <code>true</code> if the geometry of this
     * <code>Area</code> is rectangular in shape; <code>false</code>
     * otherwise.
     * @since 1.2
     */
    public boolean isRectangular() {
	int size = curves.size();
	if (size == 0) {
	    return true;
	}
	if (size > 3) {
	    return false;
	}
	Curve c1 = (Curve) curves.get(1);
	Curve c2 = (Curve) curves.get(2);
	if (c1.getOrder() != 1 || c2.getOrder() != 1) {
	    return false;
	}
	if (c1.getXTop() != c1.getXBot() || c2.getXTop() != c2.getXBot()) {
	    return false;
	}
	if (c1.getYTop() != c2.getYTop() || c1.getYBot() != c2.getYBot()) {
	    // One might be able to prove that this is impossible...
	    return false;
	}
	return true;
    }

    /**
     * Tests whether this <code>Area</code> is comprised of a single
     * closed subpath.  This method returns <code>true</code> if the 
     * path contains 0 or 1 subpaths, or <code>false</code> if the path
     * contains more than 1 subpath.  The subpaths are counted by the 
     * number of {@link PathIterator#SEG_MOVETO SEG_MOVETO}  segments 
     * that appear in the path.
     * @return    <code>true</code> if the <code>Area</code> is comprised
     * of a single basic geometry; <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean isSingular() {
	if (curves.size() < 3) {
	    return true;
	}
	Enumeration enum_ = curves.elements();
	enum_.nextElement(); // First Order0 "moveto"
	while (enum_.hasMoreElements()) {
	    if (((Curve) enum_.nextElement()).getOrder() == 0) {
		return false;
	    }
	}
	return true;
    }

    private Rectangle2D cachedBounds;
    private void invalidateBounds() {
	cachedBounds = null;
    }
    private Rectangle2D getCachedBounds() {
	if (cachedBounds != null) {
	    return cachedBounds;
	}
	Rectangle2D r = new Rectangle2D.Double();
	if (curves.size() > 0) {
	    Curve c = (Curve) curves.get(0);
	    // First point is always an order 0 curve (moveto)
	    r.setRect(c.getX0(), c.getY0(), 0, 0);
	    for (int i = 1; i < curves.size(); i++) {
		((Curve) curves.get(i)).enlarge(r);
	    }
	}
	return (cachedBounds = r);
    }

    /**
     * Returns a high precision bounding {@link Rectangle2D} that
     * completely encloses this <code>Area</code>.
     * <p>
     * The Area class will attempt to return the tightest bounding
     * box possible for the Shape.  The bounding box will not be
     * padded to include the control points of curves in the outline
     * of the Shape, but should tightly fit the actual geometry of
     * the outline itself.
     * @return    the bounding <code>Rectangle2D</code> for the
     * <code>Area</code>.
     * @since 1.2
     */
    public Rectangle2D getBounds2D() {
	return getCachedBounds().getBounds2D();
    }

    /**
     * Returns a bounding {@link Rectangle} that completely encloses
     * this <code>Area</code>.
     * <p>
     * The Area class will attempt to return the tightest bounding
     * box possible for the Shape.  The bounding box will not be
     * padded to include the control points of curves in the outline
     * of the Shape, but should tightly fit the actual geometry of
     * the outline itself.  Since the returned object represents
     * the bounding box with integers, the bounding box can only be
     * as tight as the nearest integer coordinates that encompass
     * the geometry of the Shape.
     * @return    the bounding <code>Rectangle</code> for the
     * <code>Area</code>.
     * @since 1.2
     */
    public Rectangle getBounds() {
	return getCachedBounds().getBounds();
    }

    /**
     * Returns an exact copy of this <code>Area</code> object.
     * @return    Created clone object
     * @since 1.2
     */
    public Object clone() {
	return new Area(this);
    }

    /**
     * Tests whether the geometries of the two <code>Area</code> objects
     * are equal.
     * This method will return false if the argument is null.
     * @param   other  the <code>Area</code> to be compared to this
     *		<code>Area</code>
     * @return  <code>true</code> if the two geometries are equal;
     *		<code>false</code> otherwise.
     * @since 1.2
     */
    public boolean equals(Area other) {
	// REMIND: A *much* simpler operation should be possible...
	// Should be able to do a curve-wise comparison since all Areas
	// should evaluate their curves in the same top-down order.
	if (other == this) {
	    return true;
	}
	if (other == null) {
	    return false;
	}
	Vector c = new AreaOp.XorOp().calculate(this.curves, other.curves);
	return c.isEmpty();
    }

    /**
     * Transforms the geometry of this <code>Area</code> using the specified 
     * {@link AffineTransform}.  The geometry is transformed in place, which 
     * permanently changes the enclosed area defined by this object.
     * @param t  the transformation used to transform the area
     * @throws NullPointerException if <code>t</code> is null
     * @since 1.2
     */
    public void transform(AffineTransform t) {
        if (t == null) {
            throw new NullPointerException("transform must not be null");
        }
	// REMIND: A simpler operation can be performed for some types
	// of transform.
        curves = pathToCurves(getPathIterator(t));
	invalidateBounds();
    }

    /**
     * Creates a new <code>Area</code> object that contains the same
     * geometry as this <code>Area</code> transformed by the specified
     * <code>AffineTransform</code>.  This <code>Area</code> object 
     * is unchanged.
     * @param t  the specified <code>AffineTransform</code> used to transform 
     *           the new <code>Area</code>
     * @throws NullPointerException if <code>t</code> is null
     * @return   a new <code>Area</code> object representing the transformed 
     *           geometry.
     * @since 1.2
     */
    public Area createTransformedArea(AffineTransform t) {
        Area a = new Area(this);
        a.transform(t);
        return a;
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(double x, double y) {
	if (!getCachedBounds().contains(x, y)) {
	    return false;
	}
	Enumeration enum_ = curves.elements();
	int crossings = 0;
	while (enum_.hasMoreElements()) {
	    Curve c = (Curve) enum_.nextElement();
	    crossings += c.crossingsFor(x, y);
	}
	return ((crossings & 1) == 1);
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(Point2D p) {
	return contains(p.getX(), p.getY());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(double x, double y, double w, double h) {
	if (w < 0 || h < 0) {
	    return false;
	}
	if (!getCachedBounds().contains(x, y, w, h)) {
	    return false;
	}
	Crossings c = Crossings.findCrossings(curves, x, y, x+w, y+h);
	return (c != null && c.covers(y, y+h));
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(Rectangle2D r) {
	return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean intersects(double x, double y, double w, double h) {
	if (w < 0 || h < 0) {
	    return false;
	}
	if (!getCachedBounds().intersects(x, y, w, h)) {
	    return false;
	}
	Crossings c = Crossings.findCrossings(curves, x, y, x+w, y+h);
	return (c == null || !c.isEmpty());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean intersects(Rectangle2D r) {
	return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
    }

    /**
     * Creates a {@link PathIterator} for the outline of this 
     * <code>Area</code> object.  This <code>Area</code> object is unchanged.
     * @param at an optional <code>AffineTransform</code> to be applied to
     * the coordinates as they are returned in the iteration, or
     * <code>null</code> if untransformed coordinates are desired
     * @return    the <code>PathIterator</code> object that returns the 
     *		geometry of the outline of this <code>Area</code>, one 
     *		segment at a time.
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at) {
	return new AreaIterator(curves, at);
    }

    /**
     * Creates a <code>PathIterator</code> for the flattened outline of 
     * this <code>Area</code> object.  Only uncurved path segments
     * represented by the SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point
     * types are returned by the iterator.  This <code>Area</code>
     * object is unchanged.
     * @param at an optional <code>AffineTransform</code> to be 
     * applied to the coordinates as they are returned in the 
     * iteration, or <code>null</code> if untransformed coordinates 
     * are desired
     * @param flatness the maximum amount that the control points
     * for a given curve can vary from colinear before a subdivided
     * curve is replaced by a straight line connecting the end points
     * @return    the <code>PathIterator</code> object that returns the 
     * geometry of the outline of this <code>Area</code>, one segment
     * at a time.
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at, double flatness) {
	return new FlatteningPathIterator(getPathIterator(at), flatness);
    }
}

class AreaIterator implements PathIterator {
    private AffineTransform transform;
    private Vector curves;
    private int index;
    private Curve prevcurve;
    private Curve thiscurve;

    public AreaIterator(Vector curves, AffineTransform at) {
	this.curves = curves;
	this.transform = at;
	if (curves.size() >= 1) {
	    thiscurve = (Curve) curves.get(0);
	}
    }

    public int getWindingRule() {
	// REMIND: Which is better, EVEN_ODD or NON_ZERO?
	//         The paths calculated could be classified either way.
	//return WIND_EVEN_ODD;
	return WIND_NON_ZERO;
    }

    public boolean isDone() {
	return (prevcurve == null && thiscurve == null);
    }

    public void next() {
	if (prevcurve != null) {
	    prevcurve = null;
	} else {
	    prevcurve = thiscurve;
	    index++;
	    if (index < curves.size()) {
		thiscurve = (Curve) curves.get(index);
		if (thiscurve.getOrder() != 0 &&
		    prevcurve.getX1() == thiscurve.getX0() &&
		    prevcurve.getY1() == thiscurve.getY0())
		{
		    prevcurve = null;
		}
	    } else {
		thiscurve = null;
	    }
	}
    }

    public int currentSegment(float coords[]) {
	double dcoords[] = new double[6];
	int segtype = currentSegment(dcoords);
	int numpoints = (segtype == SEG_CLOSE ? 0
			 : (segtype == SEG_QUADTO ? 2
			    : (segtype == SEG_CUBICTO ? 3
			       : 1)));
	for (int i = 0; i < numpoints * 2; i++) {
	    coords[i] = (float) dcoords[i];
	}
	return segtype;
    }

    public int currentSegment(double coords[]) {
	int segtype;
	int numpoints;
	if (prevcurve != null) {
	    // Need to finish off junction between curves
	    if (thiscurve == null || thiscurve.getOrder() == 0) {
		return SEG_CLOSE;
	    }
	    coords[0] = thiscurve.getX0();
	    coords[1] = thiscurve.getY0();
	    segtype = SEG_LINETO;
	    numpoints = 1;
	} else if (thiscurve == null) {
	    throw new NoSuchElementException("area iterator out of bounds");
	} else {
	    segtype = thiscurve.getSegment(coords);
	    numpoints = thiscurve.getOrder();
	    if (numpoints == 0) {
		numpoints = 1;
	    }
	}
	if (transform != null) {
	    transform.transform(coords, 0, coords, 0, numpoints);
	}
	return segtype;
    }
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar