1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
/* * @(#)FlatteningPathIterator.java 1.17 05/11/17 * * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package java.awt.geom; import java.util.*; /** * The <code>FlatteningPathIterator</code> class returns a flattened view of * another {@link PathIterator} object. Other {@link java.awt.Shape Shape} * classes can use this class to provide flattening behavior for their paths * without having to perform the interpolation calculations themselves. * * @version 1.6 06/29/98 * @author Jim Graham */ public class FlatteningPathIterator implements PathIterator { static final int GROW_SIZE = 24; // Multiple of cubic & quad curve size PathIterator src; // The source iterator double squareflat; // Square of the flatness parameter // for testing against squared lengths int limit; // Maximum number of recursion levels double hold[] = new double[14]; // The cache of interpolated coords // Note that this must be long enough // to store a full cubic segment and // a relative cubic segment to avoid // aliasing when copying the coords // of a curve to the end of the array. // This is also serendipitously equal // to the size of a full quad segment // and 2 relative quad segments. double curx, cury; // The ending x,y of the last segment double movx, movy; // The x,y of the last move segment int holdType; // The type of the curve being held // for interpolation int holdEnd; // The index of the last curve segment // being held for interpolation int holdIndex; // The index of the curve segment // that was last interpolated. This // is the curve segment ready to be // returned in the next call to // currentSegment(). int levels[]; // The recursion level at which // each curve being held in storage // was generated. int levelIndex; // The index of the entry in the // levels array of the curve segment // at the holdIndex boolean done; // True when iteration is done /** * Constructs a new <code>FlatteningPathIterator</code> object that * flattens a path as it iterates over it. The iterator does not * subdivide any curve read from the source iterator to more than * 10 levels of subdivision which yields a maximum of 1024 line * segments per curve. * @param src the original unflattened path being iterated over * @param flatness the maximum allowable distance between the * control points and the flattened curve */ public FlatteningPathIterator(PathIterator src, double flatness) { this(src, flatness, 10); } /** * Constructs a new <code>FlatteningPathIterator</code> object * that flattens a path as it iterates over it. * The <code>limit</code> parameter allows you to control the * maximum number of recursive subdivisions that the iterator * can make before it assumes that the curve is flat enough * without measuring against the <code>flatness</code> parameter. * The flattened iteration therefore never generates more than * a maximum of <code>(2^limit)</code> line segments per curve. * @param src the original unflattened path being iterated over * @param flatness the maximum allowable distance between the * control points and the flattened curve * @param limit the maximum number of recursive subdivisions * allowed for any curved segment * @exception <code>IllegalArgumentException</code> if * <code>flatness</code> or <code>limit</code> * is less than zero */ public FlatteningPathIterator(PathIterator src, double flatness, int limit) { if (flatness < 0.0) { throw new IllegalArgumentException("flatness must be >= 0"); } if (limit < 0) { throw new IllegalArgumentException("limit must be >= 0"); } this.src = src; this.squareflat = flatness * flatness; this.limit = limit; this.levels = new int[limit + 1]; // prime the first path segment next(false); } /** * Returns the flatness of this iterator. * @return the flatness of this <code>FlatteningPathIterator</code>. */ public double getFlatness() { return Math.sqrt(squareflat); } /** * Returns the recursion limit of this iterator. * @return the recursion limit of this * <code>FlatteningPathIterator</code>. */ public int getRecursionLimit() { return limit; } /** * Returns the winding rule for determining the interior of the * path. * @return the winding rule of the original unflattened path being * iterated over. * @see PathIterator#WIND_EVEN_ODD * @see PathIterator#WIND_NON_ZERO */ public int getWindingRule() { return src.getWindingRule(); } /** * Tests if the iteration is complete. * @return <code>true</code> if all the segments have * been read; <code>false</code> otherwise. */ public boolean isDone() { return done; } /* * Ensures that the hold array can hold up to (want) more values. * It is currently holding (hold.length - holdIndex) values. */ void ensureHoldCapacity(int want) { if (holdIndex - want < 0) { int have = hold.length - holdIndex; int newsize = hold.length + GROW_SIZE; double newhold[] = new double[newsize]; System.arraycopy(hold, holdIndex, newhold, holdIndex + GROW_SIZE, have); hold = newhold; holdIndex += GROW_SIZE; holdEnd += GROW_SIZE; } } /** * Moves the iterator to the next segment of the path forwards * along the primary direction of traversal as long as there are * more points in that direction. */ public void next() { next(true); } private void next(boolean doNext) { int level; if (holdIndex >= holdEnd) { if (doNext) { src.next(); } if (src.isDone()) { done = true; return; } holdType = src.currentSegment(hold); levelIndex = 0; levels[0] = 0; } switch (holdType) { case SEG_MOVETO: case SEG_LINETO: curx = hold[0]; cury = hold[1]; if (holdType == SEG_MOVETO) { movx = curx; movy = cury; } holdIndex = 0; holdEnd = 0; break; case SEG_CLOSE: curx = movx; cury = movy; holdIndex = 0; holdEnd = 0; break; case SEG_QUADTO: if (holdIndex >= holdEnd) { // Move the coordinates to the end of the array. holdIndex = hold.length - 6; holdEnd = hold.length - 2; hold[holdIndex + 0] = curx; hold[holdIndex + 1] = cury; hold[holdIndex + 2] = hold[0]; hold[holdIndex + 3] = hold[1]; hold[holdIndex + 4] = curx = hold[2]; hold[holdIndex + 5] = cury = hold[3]; } level = levels[levelIndex]; while (level < limit) { if (QuadCurve2D.getFlatnessSq(hold, holdIndex) < squareflat) { break; } ensureHoldCapacity(4); QuadCurve2D.subdivide(hold, holdIndex, hold, holdIndex - 4, hold, holdIndex); holdIndex -= 4; // Now that we have subdivided, we have constructed // two curves of one depth lower than the original // curve. One of those curves is in the place of // the former curve and one of them is in the next // set of held coordinate slots. We now set both // curves level values to the next higher level. level++; levels[levelIndex] = level; levelIndex++; levels[levelIndex] = level; } // This curve segment is flat enough, or it is too deep // in recursion levels to try to flatten any more. The // two coordinates at holdIndex+4 and holdIndex+5 now // contain the endpoint of the curve which can be the // endpoint of an approximating line segment. holdIndex += 4; levelIndex--; break; case SEG_CUBICTO: if (holdIndex >= holdEnd) { // Move the coordinates to the end of the array. holdIndex = hold.length - 8; holdEnd = hold.length - 2; hold[holdIndex + 0] = curx; hold[holdIndex + 1] = cury; hold[holdIndex + 2] = hold[0]; hold[holdIndex + 3] = hold[1]; hold[holdIndex + 4] = hold[2]; hold[holdIndex + 5] = hold[3]; hold[holdIndex + 6] = curx = hold[4]; hold[holdIndex + 7] = cury = hold[5]; } level = levels[levelIndex]; while (level < limit) { if (CubicCurve2D.getFlatnessSq(hold, holdIndex) < squareflat) { break; } ensureHoldCapacity(6); CubicCurve2D.subdivide(hold, holdIndex, hold, holdIndex - 6, hold, holdIndex); holdIndex -= 6; // Now that we have subdivided, we have constructed // two curves of one depth lower than the original // curve. One of those curves is in the place of // the former curve and one of them is in the next // set of held coordinate slots. We now set both // curves level values to the next higher level. level++; levels[levelIndex] = level; levelIndex++; levels[levelIndex] = level; } // This curve segment is flat enough, or it is too deep // in recursion levels to try to flatten any more. The // two coordinates at holdIndex+6 and holdIndex+7 now // contain the endpoint of the curve which can be the // endpoint of an approximating line segment. holdIndex += 6; levelIndex--; break; } } /** * Returns the coordinates and type of the current path segment in * the iteration. * The return value is the path segment type: * SEG_MOVETO, SEG_LINETO, or SEG_CLOSE. * A float array of length 6 must be passed in and can be used to * store the coordinates of the point(s). * Each point is stored as a pair of float x,y coordinates. * SEG_MOVETO and SEG_LINETO types return one point, * and SEG_CLOSE does not return any points. * @param coords an array that holds the data returned from * this method * @return the path segment type of the current path segment. * @exception <code>NoSuchElementException</code> if there * are no more elements in the flattening path to be * returned. * @see PathIterator#SEG_MOVETO * @see PathIterator#SEG_LINETO * @see PathIterator#SEG_CLOSE */ public int currentSegment(float[] coords) { if (isDone()) { throw new NoSuchElementException("flattening iterator out of bounds"); } int type = holdType; if (type != SEG_CLOSE) { coords[0] = (float) hold[holdIndex + 0]; coords[1] = (float) hold[holdIndex + 1]; if (type != SEG_MOVETO) { type = SEG_LINETO; } } return type; } /** * Returns the coordinates and type of the current path segment in * the iteration. * The return value is the path segment type: * SEG_MOVETO, SEG_LINETO, or SEG_CLOSE. * A double array of length 6 must be passed in and can be used to * store the coordinates of the point(s). * Each point is stored as a pair of double x,y coordinates. * SEG_MOVETO and SEG_LINETO types return one point, * and SEG_CLOSE does not return any points. * @param coords an array that holds the data returned from * this method * @return the path segment type of the current path segment. * @exception <code>NoSuchElementException</code> if there * are no more elements in the flattening path to be * returned. * @see PathIterator#SEG_MOVETO * @see PathIterator#SEG_LINETO * @see PathIterator#SEG_CLOSE */ public int currentSegment(double[] coords) { if (isDone()) { throw new NoSuchElementException("flattening iterator out of bounds"); } int type = holdType; if (type != SEG_CLOSE) { coords[0] = hold[holdIndex + 0]; coords[1] = hold[holdIndex + 1]; if (type != SEG_MOVETO) { type = SEG_LINETO; } } return type; } }