API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.awt.geom. QuadCurve2D View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

/*
 * @(#)QuadCurve2D.java	1.34 06/04/17
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.awt.geom;

import java.awt.Shape;
import java.awt.Rectangle;
import java.io.Serializable;
import sun.awt.geom.Curve;

/**
 * The <code>QuadCurve2D</code> class defines a quadratic parametric curve
 * segment in {@code (x,y)} coordinate space.
 * <p>
 * This class is only the abstract superclass for all objects that
 * store a 2D quadratic curve segment.
 * The actual storage representation of the coordinates is left to
 * the subclass.
 *
 * @version 	1.34, 04/17/06
 * @author	Jim Graham
 * @since 1.2
 */
public abstract class QuadCurve2D implements Shape, Cloneable {

    /**
     * A quadratic parametric curve segment specified with 
     * {@code float} coordinates.
     *
     * @since 1.2
     */
    public static class Float extends QuadCurve2D implements Serializable {
	/**
         * The X coordinate of the start point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public float x1;

	/**
         * The Y coordinate of the start point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public float y1;

	/**
         * The X coordinate of the control point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public float ctrlx;

	/**
         * The Y coordinate of the control point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public float ctrly;

	/**
         * The X coordinate of the end point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public float x2;

	/**
         * The Y coordinate of the end point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public float y2;

	/**
	 * Constructs and initializes a <code>QuadCurve2D</code> with
         * coordinates (0, 0, 0, 0, 0, 0).
         * @since 1.2
	 */
	public Float() {
	}

	/**
	 * Constructs and initializes a <code>QuadCurve2D</code> from the
         * specified {@code float} coordinates.
         *
         * @param x1 the X coordinate of the start point
         * @param y1 the Y coordinate of the start point
         * @param ctrlx the X coordinate of the control point
         * @param ctrly the Y coordinate of the control point
         * @param x2 the X coordinate of the end point
         * @param y2 the Y coordinate of the end point
         * @since 1.2
	 */
	public Float(float x1, float y1,
		     float ctrlx, float ctrly,
		     float x2, float y2)
        {
	    setCurve(x1, y1, ctrlx, ctrly, x2, y2);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getX1() {
	    return (double) x1;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getY1() {
	    return (double) y1;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Point2D getP1() {
	    return new Point2D.Float(x1, y1);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getCtrlX() {
	    return (double) ctrlx;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getCtrlY() {
	    return (double) ctrly;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Point2D getCtrlPt() {
	    return new Point2D.Float(ctrlx, ctrly);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getX2() {
	    return (double) x2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getY2() {
	    return (double) y2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Point2D getP2() {
	    return new Point2D.Float(x2, y2);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public void setCurve(double x1, double y1,
			     double ctrlx, double ctrly,
			     double x2, double y2)
        {
	    this.x1    = (float) x1;
	    this.y1    = (float) y1;
	    this.ctrlx = (float) ctrlx;
	    this.ctrly = (float) ctrly;
	    this.x2    = (float) x2;
	    this.y2    = (float) y2;
	}

	/**
         * Sets the location of the end points and control point of this curve
         * to the specified {@code float} coordinates.
         *
         * @param x1 the X coordinate of the start point
         * @param y1 the Y coordinate of the start point
         * @param ctrlx the X coordinate of the control point
         * @param ctrly the Y coordinate of the control point
         * @param x2 the X coordinate of the end point
         * @param y2 the Y coordinate of the end point
         * @since 1.2
	 */
	public void setCurve(float x1, float y1,
			     float ctrlx, float ctrly,
			     float x2, float y2)
        {
	    this.x1    = x1;
	    this.y1    = y1;
	    this.ctrlx = ctrlx;
	    this.ctrly = ctrly;
	    this.x2    = x2;
	    this.y2    = y2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
         */
	public Rectangle2D getBounds2D() {
	    float left   = Math.min(Math.min(x1, x2), ctrlx);
	    float top    = Math.min(Math.min(y1, y2), ctrly);
	    float right  = Math.max(Math.max(x1, x2), ctrlx);
	    float bottom = Math.max(Math.max(y1, y2), ctrly);
	    return new Rectangle2D.Float(left, top,
					 right - left, bottom - top);
	}

        /*
         * JDK 1.6 serialVersionUID
         */
        private static final long serialVersionUID = -8511188402130719609L;
    }

    /**
     * A quadratic parametric curve segment specified with 
     * {@code double} coordinates.
     *
     * @since 1.2
     */
    public static class Double extends QuadCurve2D implements Serializable {
	/**
         * The X coordinate of the start point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public double x1;

	/**
         * The Y coordinate of the start point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public double y1;

	/**
         * The X coordinate of the control point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public double ctrlx;

	/**
         * The Y coordinate of the control point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public double ctrly;

	/**
         * The X coordinate of the end point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public double x2;

	/**
         * The Y coordinate of the end point of the quadratic curve
         * segment.
         * @since 1.2
         * @serial
	 */
	public double y2;

	/**
	 * Constructs and initializes a <code>QuadCurve2D</code> with
         * coordinates (0, 0, 0, 0, 0, 0).
         * @since 1.2
	 */
	public Double() {
	}

	/**
	 * Constructs and initializes a <code>QuadCurve2D</code> from the
         * specified {@code double} coordinates.
         *
         * @param x1 the X coordinate of the start point
         * @param y1 the Y coordinate of the start point
         * @param ctrlx the X coordinate of the control point
         * @param ctrly the Y coordinate of the control point
         * @param x2 the X coordinate of the end point
         * @param y2 the Y coordinate of the end point
         * @since 1.2
	 */
	public Double(double x1, double y1,
		      double ctrlx, double ctrly,
		      double x2, double y2)
        {
	    setCurve(x1, y1, ctrlx, ctrly, x2, y2);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getX1() {
	    return x1;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getY1() {
	    return y1;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Point2D getP1() {
	    return new Point2D.Double(x1, y1);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getCtrlX() {
	    return ctrlx;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getCtrlY() {
	    return ctrly;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Point2D getCtrlPt() {
	    return new Point2D.Double(ctrlx, ctrly);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getX2() {
	    return x2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getY2() {
	    return y2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Point2D getP2() {
	    return new Point2D.Double(x2, y2);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public void setCurve(double x1, double y1,
			     double ctrlx, double ctrly,
			     double x2, double y2)
        {
	    this.x1    = x1;
	    this.y1    = y1;
	    this.ctrlx = ctrlx;
	    this.ctrly = ctrly;
	    this.x2    = x2;
	    this.y2    = y2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Rectangle2D getBounds2D() {
	    double left   = Math.min(Math.min(x1, x2), ctrlx);
	    double top    = Math.min(Math.min(y1, y2), ctrly);
	    double right  = Math.max(Math.max(x1, x2), ctrlx);
	    double bottom = Math.max(Math.max(y1, y2), ctrly);
	    return new Rectangle2D.Double(left, top,
					  right - left, bottom - top);
	}

        /*
         * JDK 1.6 serialVersionUID
         */
        private static final long serialVersionUID = 4217149928428559721L;
    }

    /**
     * This is an abstract class that cannot be instantiated directly.
     * Type-specific implementation subclasses are available for
     * instantiation and provide a number of formats for storing
     * the information necessary to satisfy the various accessor
     * methods below.
     *
     * @see java.awt.geom.QuadCurve2D.Float
     * @see java.awt.geom.QuadCurve2D.Double
     * @since 1.2
     */
    protected QuadCurve2D() {
    }

    /**
     * Returns the X coordinate of the start point in 
     * <code>double</code> in precision.
     * @return the X coordinate of the start point.
     * @since 1.2
     */
    public abstract double getX1();

    /**
     * Returns the Y coordinate of the start point in 
     * <code>double</code> precision.
     * @return the Y coordinate of the start point.
     * @since 1.2
     */
    public abstract double getY1();

    /**
     * Returns the start point.
     * @return a <code>Point2D</code> that is the start point of this
     * 		<code>QuadCurve2D</code>.
     * @since 1.2
     */
    public abstract Point2D getP1();

    /**
     * Returns the X coordinate of the control point in 
     * <code>double</code> precision.
     * @return X coordinate the control point
     * @since 1.2
     */
    public abstract double getCtrlX();

    /**
     * Returns the Y coordinate of the control point in 
     * <code>double</code> precision.
     * @return the Y coordinate of the control point.
     * @since 1.2
     */
    public abstract double getCtrlY();

    /**
     * Returns the control point.
     * @return a <code>Point2D</code> that is the control point of this
     * 		<code>Point2D</code>.
     * @since 1.2
     */
    public abstract Point2D getCtrlPt();

    /**
     * Returns the X coordinate of the end point in 
     * <code>double</code> precision.
     * @return the x coordiante of the end point.
     * @since 1.2
     */
    public abstract double getX2();

    /**
     * Returns the Y coordinate of the end point in 
     * <code>double</code> precision.
     * @return the Y coordinate of the end point.
     * @since 1.2
     */
    public abstract double getY2();

    /**
     * Returns the end point.
     * @return a <code>Point</code> object that is the end point
     * 		of this <code>Point2D</code>.
     * @since 1.2
     */
    public abstract Point2D getP2();

    /**
     * Sets the location of the end points and control point of this curve
     * to the specified <code>double</code> coordinates.
     *
     * @param x1 the X coordinate of the start point
     * @param y1 the Y coordinate of the start point
     * @param ctrlx the X coordinate of the control point
     * @param ctrly the Y coordinate of the control point
     * @param x2 the X coordinate of the end point
     * @param y2 the Y coordinate of the end point
     * @since 1.2
     */
    public abstract void setCurve(double x1, double y1,
				  double ctrlx, double ctrly,
				  double x2, double y2);

    /**
     * Sets the location of the end points and control points of this 
     * <code>QuadCurve2D</code> to the <code>double</code> coordinates at
     * the specified offset in the specified array.
     * @param coords the array containing coordinate values
     * @param offset the index into the array from which to start
     *		getting the coordinate values and assigning them to this
     *		<code>QuadCurve2D</code>
     * @since 1.2
     */
    public void setCurve(double[] coords, int offset) {
	setCurve(coords[offset + 0], coords[offset + 1],
		 coords[offset + 2], coords[offset + 3],
		 coords[offset + 4], coords[offset + 5]);
    }

    /**
     * Sets the location of the end points and control point of this
     * <code>QuadCurve2D</code> to the specified <code>Point2D</code> 
     * coordinates.
     * @param p1 the start point
     * @param cp the control point
     * @param p2 the end point
     * @since 1.2
     */
    public void setCurve(Point2D p1, Point2D cp, Point2D p2) {
	setCurve(p1.getX(), p1.getY(),
		 cp.getX(), cp.getY(),
		 p2.getX(), p2.getY());
    }

    /**
     * Sets the location of the end points and control points of this
     * <code>QuadCurve2D</code> to the coordinates of the 
     * <code>Point2D</code> objects at the specified offset in
     * the specified array.
     * @param pts an array containing <code>Point2D</code> that define
     *		coordinate values
     * @param offset the index into <code>pts</code> from which to start
     *		getting the coordinate values and assigning them to this
     *		<code>QuadCurve2D</code>
     * @since 1.2
     */
    public void setCurve(Point2D[] pts, int offset) {
	setCurve(pts[offset + 0].getX(), pts[offset + 0].getY(),
		 pts[offset + 1].getX(), pts[offset + 1].getY(),
		 pts[offset + 2].getX(), pts[offset + 2].getY());
    }

    /**
     * Sets the location of the end points and control point of this 
     * <code>QuadCurve2D</code> to the same as those in the specified
     * <code>QuadCurve2D</code>.
     * @param c the specified <code>QuadCurve2D</code>
     * @since 1.2
     */
    public void setCurve(QuadCurve2D c) {
	setCurve(c.getX1(), c.getY1(),
		 c.getCtrlX(), c.getCtrlY(),
		 c.getX2(), c.getY2());
    }

    /**
     * Returns the square of the flatness, or maximum distance of a
     * control point from the line connecting the end points, of the
     * quadratic curve specified by the indicated control points.
     *
     * @param x1 the X coordinate of the start point
     * @param y1 the Y coordinate of the start point
     * @param ctrlx the X coordinate of the control point
     * @param ctrly the Y coordinate of the control point
     * @param x2 the X coordinate of the end point
     * @param y2 the Y coordinate of the end point
     * @return the square of the flatness of the quadratic curve
     *		defined by the specified coordinates.
     * @since 1.2
     */
    public static double getFlatnessSq(double x1, double y1,
				       double ctrlx, double ctrly,
				       double x2, double y2) {
	return Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx, ctrly);
    }

    /**
     * Returns the flatness, or maximum distance of a
     * control point from the line connecting the end points, of the
     * quadratic curve specified by the indicated control points.
     *
     * @param x1 the X coordinate of the start point
     * @param y1 the Y coordinate of the start point
     * @param ctrlx the X coordinate of the control point
     * @param ctrly the Y coordinate of the control point
     * @param x2 the X coordinate of the end point
     * @param y2 the Y coordinate of the end point
     * @return the flatness of the quadratic curve defined by the 
     *		specified coordinates. 
     * @since 1.2
     */
    public static double getFlatness(double x1, double y1,
				     double ctrlx, double ctrly,
				     double x2, double y2) {
	return Line2D.ptSegDist(x1, y1, x2, y2, ctrlx, ctrly);
    }

    /**
     * Returns the square of the flatness, or maximum distance of a
     * control point from the line connecting the end points, of the
     * quadratic curve specified by the control points stored in the
     * indicated array at the indicated index.
     * @param coords an array containing coordinate values
     * @param offset the index into <code>coords</code> from which to
     *		to start getting the values from the array
     * @return the flatness of the quadratic curve that is defined by the
     * 		values in the specified array at the specified index.
     * @since 1.2
     */
    public static double getFlatnessSq(double coords[], int offset) {
	return Line2D.ptSegDistSq(coords[offset + 0], coords[offset + 1],
				  coords[offset + 4], coords[offset + 5],
				  coords[offset + 2], coords[offset + 3]);
    }

    /**
     * Returns the flatness, or maximum distance of a
     * control point from the line connecting the end points, of the
     * quadratic curve specified by the control points stored in the
     * indicated array at the indicated index.
     * @param coords an array containing coordinate values
     * @param offset the index into <code>coords</code> from which to
     *		start getting the coordinate values
     * @return the flatness of a quadratic curve defined by the 
     *		specified array at the specified offset.
     * @since 1.2
     */
    public static double getFlatness(double coords[], int offset) {
	return Line2D.ptSegDist(coords[offset + 0], coords[offset + 1],
				coords[offset + 4], coords[offset + 5],
				coords[offset + 2], coords[offset + 3]);
    }

    /**
     * Returns the square of the flatness, or maximum distance of a
     * control point from the line connecting the end points, of this 
     * <code>QuadCurve2D</code>.
     * @return the square of the flatness of this
     *		<code>QuadCurve2D</code>.
     * @since 1.2
     */
    public double getFlatnessSq() {
	return Line2D.ptSegDistSq(getX1(), getY1(),
				  getX2(), getY2(),
				  getCtrlX(), getCtrlY());
    }

    /**
     * Returns the flatness, or maximum distance of a
     * control point from the line connecting the end points, of this
     * <code>QuadCurve2D</code>.
     * @return the flatness of this <code>QuadCurve2D</code>.
     * @since 1.2
     */
    public double getFlatness() {
	return Line2D.ptSegDist(getX1(), getY1(),
				getX2(), getY2(),
				getCtrlX(), getCtrlY());
    }

    /**
     * Subdivides this <code>QuadCurve2D</code> and stores the resulting
     * two subdivided curves into the <code>left</code> and 
     * <code>right</code> curve parameters.
     * Either or both of the <code>left</code> and <code>right</code> 
     * objects can be the same as this <code>QuadCurve2D</code> or
     * <code>null</code>.
     * @param left the <code>QuadCurve2D</code> object for storing the
     * left or first half of the subdivided curve
     * @param right the <code>QuadCurve2D</code> object for storing the
     * right or second half of the subdivided curve
     * @since 1.2
     */
    public void subdivide(QuadCurve2D left, QuadCurve2D right) {
	subdivide(this, left, right);
    }

    /**
     * Subdivides the quadratic curve specified by the <code>src</code> 
     * parameter and stores the resulting two subdivided curves into the
     * <code>left</code> and <code>right</code> curve parameters.
     * Either or both of the <code>left</code> and <code>right</code> 
     * objects can be the same as the <code>src</code> object or 
     * <code>null</code>.
     * @param src the quadratic curve to be subdivided
     * @param left the <code>QuadCurve2D</code> object for storing the
     *		left or first half of the subdivided curve
     * @param right the <code>QuadCurve2D</code> object for storing the
     *		right or second half of the subdivided curve
     * @since 1.2
     */
    public static void subdivide(QuadCurve2D src,
				 QuadCurve2D left,
				 QuadCurve2D right) {
	double x1 = src.getX1();
	double y1 = src.getY1();
	double ctrlx = src.getCtrlX();
	double ctrly = src.getCtrlY();
	double x2 = src.getX2();
	double y2 = src.getY2();
	double ctrlx1 = (x1 + ctrlx) / 2.0;
	double ctrly1 = (y1 + ctrly) / 2.0;
	double ctrlx2 = (x2 + ctrlx) / 2.0;
	double ctrly2 = (y2 + ctrly) / 2.0;
	ctrlx = (ctrlx1 + ctrlx2) / 2.0;
	ctrly = (ctrly1 + ctrly2) / 2.0;
	if (left != null) {
	    left.setCurve(x1, y1, ctrlx1, ctrly1, ctrlx, ctrly);
	}
	if (right != null) {
	    right.setCurve(ctrlx, ctrly, ctrlx2, ctrly2, x2, y2);
	}
    }

    /**
     * Subdivides the quadratic curve specified by the coordinates
     * stored in the <code>src</code> array at indices 
     * <code>srcoff</code> through <code>srcoff</code>&nbsp;+&nbsp;5
     * and stores the resulting two subdivided curves into the two
     * result arrays at the corresponding indices.
     * Either or both of the <code>left</code> and <code>right</code> 
     * arrays can be <code>null</code> or a reference to the same array
     * and offset as the <code>src</code> array.
     * Note that the last point in the first subdivided curve is the
     * same as the first point in the second subdivided curve.  Thus,
     * it is possible to pass the same array for <code>left</code> and
     * <code>right</code> and to use offsets such that 
     * <code>rightoff</code> equals <code>leftoff</code> + 4 in order
     * to avoid allocating extra storage for this common point.
     * @param src the array holding the coordinates for the source curve
     * @param srcoff the offset into the array of the beginning of the
     * the 6 source coordinates
     * @param left the array for storing the coordinates for the first
     * half of the subdivided curve
     * @param leftoff the offset into the array of the beginning of the
     * the 6 left coordinates
     * @param right the array for storing the coordinates for the second
     * half of the subdivided curve
     * @param rightoff the offset into the array of the beginning of the
     * the 6 right coordinates
     * @since 1.2
     */
    public static void subdivide(double src[], int srcoff,
				 double left[], int leftoff,
				 double right[], int rightoff) {
	double x1 = src[srcoff + 0];
	double y1 = src[srcoff + 1];
	double ctrlx = src[srcoff + 2];
	double ctrly = src[srcoff + 3];
	double x2 = src[srcoff + 4];
	double y2 = src[srcoff + 5];
	if (left != null) {
	    left[leftoff + 0] = x1;
	    left[leftoff + 1] = y1;
	}
	if (right != null) {
	    right[rightoff + 4] = x2;
	    right[rightoff + 5] = y2;
	}
	x1 = (x1 + ctrlx) / 2.0;
	y1 = (y1 + ctrly) / 2.0;
	x2 = (x2 + ctrlx) / 2.0;
	y2 = (y2 + ctrly) / 2.0;
	ctrlx = (x1 + x2) / 2.0;
	ctrly = (y1 + y2) / 2.0;
	if (left != null) {
	    left[leftoff + 2] = x1;
	    left[leftoff + 3] = y1;
	    left[leftoff + 4] = ctrlx;
	    left[leftoff + 5] = ctrly;
	}
	if (right != null) {
	    right[rightoff + 0] = ctrlx;
	    right[rightoff + 1] = ctrly;
	    right[rightoff + 2] = x2;
	    right[rightoff + 3] = y2;
	}
    }

    /**
     * Solves the quadratic whose coefficients are in the <code>eqn</code> 
     * array and places the non-complex roots back into the same array,
     * returning the number of roots.  The quadratic solved is represented
     * by the equation:
     * <pre>
     *     eqn = {C, B, A};
     *     ax^2 + bx + c = 0
     * </pre>
     * A return value of <code>-1</code> is used to distinguish a constant
     * equation, which might be always 0 or never 0, from an equation that
     * has no zeroes.
     * @param eqn the array that contains the quadratic coefficients
     * @return the number of roots, or <code>-1</code> if the equation is
     *		a constant
     * @since 1.2
     */
    public static int solveQuadratic(double eqn[]) {
	return solveQuadratic(eqn, eqn);
    }

    /**
     * Solves the quadratic whose coefficients are in the <code>eqn</code> 
     * array and places the non-complex roots into the <code>res</code>
     * array, returning the number of roots.
     * The quadratic solved is represented by the equation:
     * <pre>
     *     eqn = {C, B, A};
     *     ax^2 + bx + c = 0
     * </pre>
     * A return value of <code>-1</code> is used to distinguish a constant
     * equation, which might be always 0 or never 0, from an equation that
     * has no zeroes.
     * @param eqn the specified array of coefficients to use to solve
     *        the quadratic equation
     * @param res the array that contains the non-complex roots 
     *        resulting from the solution of the quadratic equation
     * @return the number of roots, or <code>-1</code> if the equation is
     *	a constant.
     * @since 1.3
     */
    public static int solveQuadratic(double eqn[], double res[]) {
	double a = eqn[2];
	double b = eqn[1];
	double c = eqn[0];
	int roots = 0;
	if (a == 0.0) {
	    // The quadratic parabola has degenerated to a line.
	    if (b == 0.0) {
		// The line has degenerated to a constant.
		return -1;
	    } 
	    res[roots++] = -c / b;
	} else {
	    // From Numerical Recipes, 5.6, Quadratic and Cubic Equations
	    double d = b * b - 4.0 * a * c;
	    if (d < 0.0) {
		// If d < 0.0, then there are no roots
		return 0;
	    }
	    d = Math.sqrt(d);
	    // For accuracy, calculate one root using:
	    //     (-b +/- d) / 2a
	    // and the other using:
	    //     2c / (-b +/- d)
	    // Choose the sign of the +/- so that b+d gets larger in magnitude
	    if (b < 0.0) {
		d = -d;
	    }
	    double q = (b + d) / -2.0;
	    // We already tested a for being 0 above
	    res[roots++] = q / a;
	    if (q != 0.0) {
		res[roots++] = c / q;
	    }
	}
	return roots;
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(double x, double y) {

	double x1 = getX1();
	double y1 = getY1();
	double xc = getCtrlX();
	double yc = getCtrlY();
	double x2 = getX2();
	double y2 = getY2();

	/*
	 * We have a convex shape bounded by quad curve Pc(t)
	 * and ine Pl(t).
	 *
	 *     P1 = (x1, y1) - start point of curve
	 *     P2 = (x2, y2) - end point of curve
	 *     Pc = (xc, yc) - control point
	 *
	 *     Pq(t) = P1*(1 - t)^2 + 2*Pc*t*(1 - t) + P2*t^2 =
	 *           = (P1 - 2*Pc + P2)*t^2 + 2*(Pc - P1)*t + P1
	 *     Pl(t) = P1*(1 - t) + P2*t
	 *     t = [0:1]
	 *
	 *     P = (x, y) - point of interest
	 *
	 * Let's look at second derivative of quad curve equation:
	 *
	 *     Pq''(t) = 2 * (P1 - 2 * Pc + P2) = Pq''
	 *     It's constant vector.
	 *
	 * Let's draw a line through P to be parallel to this
	 * vector and find the intersection of the quad curve
	 * and the line.
	 *
	 * Pq(t) is point of intersection if system of equations
	 * below has the solution.
	 *
	 *     L(s) = P + Pq''*s == Pq(t)
	 *     Pq''*s + (P - Pq(t)) == 0
	 *
	 *     | xq''*s + (x - xq(t)) == 0
	 *     | yq''*s + (y - yq(t)) == 0
	 *
	 * This system has the solution if rank of its matrix equals to 1.
	 * That is, determinant of the matrix should be zero.
	 *
	 *     (y - yq(t))*xq'' == (x - xq(t))*yq''
	 *
	 * Let's solve this equation with 't' variable.
	 * Also let kx = x1 - 2*xc + x2
	 *          ky = y1 - 2*yc + y2
	 *
	 *     t0q = (1/2)*((x - x1)*ky - (y - y1)*kx) /
	 *                 ((xc - x1)*ky - (yc - y1)*kx)
	 *
	 * Let's do the same for our line Pl(t):
	 *
	 *     t0l = ((x - x1)*ky - (y - y1)*kx) /
	 *           ((x2 - x1)*ky - (y2 - y1)*kx)
	 *
	 * It's easy to check that t0q == t0l. This fact means
	 * we can compute t0 only one time.
	 *
	 * In case t0 < 0 or t0 > 1, we have an intersections outside
	 * of shape bounds. So, P is definitely out of shape.
	 *
	 * In case t0 is inside [0:1], we should calculate Pq(t0)
	 * and Pl(t0). We have three points for now, and all of them
	 * lie on one line. So, we just need to detect, is our point
	 * of interest between points of intersections or not.
	 *
	 * If the denominator in the t0q and t0l equations is
	 * zero, then the points must be collinear and so the
	 * curve is degenerate and encloses no area.  Thus the
	 * result is false.
	 */
	double kx = x1 - 2 * xc + x2;
	double ky = y1 - 2 * yc + y2;
	double dx = x - x1;
	double dy = y - y1;
	double dxl = x2 - x1;
	double dyl = y2 - y1;

	double t0 = (dx * ky - dy * kx) / (dxl * ky - dyl * kx);
	if (t0 < 0 || t0 > 1 || t0 != t0) {
	    return false;
	}

	double xb = kx * t0 * t0 + 2 * (xc - x1) * t0 + x1;
	double yb = ky * t0 * t0 + 2 * (yc - y1) * t0 + y1;
	double xl = dxl * t0 + x1;
	double yl = dyl * t0 + y1;

	return (x >= xb && x < xl) ||
	       (x >= xl && x < xb) ||
	       (y >= yb && y < yl) ||
	       (y >= yl && y < yb);
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(Point2D p) {
	return contains(p.getX(), p.getY());
    }

    /**
     * Fill an array with the coefficients of the parametric equation
     * in t, ready for solving against val with solveQuadratic.
     * We currently have:
     *     val = Py(t) = C1*(1-t)^2 + 2*CP*t*(1-t) + C2*t^2
     *                 = C1 - 2*C1*t + C1*t^2 + 2*CP*t - 2*CP*t^2 + C2*t^2
     *                 = C1 + (2*CP - 2*C1)*t + (C1 - 2*CP + C2)*t^2
     *               0 = (C1 - val) + (2*CP - 2*C1)*t + (C1 - 2*CP + C2)*t^2
     *               0 = C + Bt + At^2
     *     C = C1 - val
     *     B = 2*CP - 2*C1
     *     A = C1 - 2*CP + C2
     */
    private static void fillEqn(double eqn[], double val,
				double c1, double cp, double c2) {
	eqn[0] = c1 - val;
	eqn[1] = cp + cp - c1 - c1;
	eqn[2] = c1 - cp - cp + c2;
	return;
    }

    /**
     * Evaluate the t values in the first num slots of the vals[] array
     * and place the evaluated values back into the same array.  Only
     * evaluate t values that are within the range <0, 1>, including
     * the 0 and 1 ends of the range iff the include0 or include1
     * booleans are true.  If an "inflection" equation is handed in,
     * then any points which represent a point of inflection for that
     * quadratic equation are also ignored.
     */
    private static int evalQuadratic(double vals[], int num,
				     boolean include0,
				     boolean include1,
				     double inflect[],
				     double c1, double ctrl, double c2) {
	int j = 0;
	for (int i = 0; i < num; i++) {
	    double t = vals[i];
	    if ((include0 ? t >= 0 : t > 0) &&
		(include1 ? t <= 1 : t < 1) &&
		(inflect == null ||
		 inflect[1] + 2*inflect[2]*t != 0))
	    {
		double u = 1 - t;
		vals[j++] = c1*u*u + 2*ctrl*t*u + c2*t*t;
	    }
	}
	return j;
    }

    private static final int BELOW = -2;
    private static final int LOWEDGE = -1;
    private static final int INSIDE = 0;
    private static final int HIGHEDGE = 1;
    private static final int ABOVE = 2;

    /**
     * Determine where coord lies with respect to the range from
     * low to high.  It is assumed that low <= high.  The return
     * value is one of the 5 values BELOW, LOWEDGE, INSIDE, HIGHEDGE,
     * or ABOVE.
     */
    private static int getTag(double coord, double low, double high) {
	if (coord <= low) {
	    return (coord < low ? BELOW : LOWEDGE);
	}
	if (coord >= high) {
	    return (coord > high ? ABOVE : HIGHEDGE);
	}
	return INSIDE;
    }

    /**
     * Determine if the pttag represents a coordinate that is already
     * in its test range, or is on the border with either of the two
     * opttags representing another coordinate that is "towards the
     * inside" of that test range.  In other words, are either of the
     * two "opt" points "drawing the pt inward"?
     */
    private static boolean inwards(int pttag, int opt1tag, int opt2tag) {
	switch (pttag) {
	case BELOW:
	case ABOVE:
	default:
	    return false;
	case LOWEDGE:
	    return (opt1tag >= INSIDE || opt2tag >= INSIDE);
	case INSIDE:
	    return true;
	case HIGHEDGE:
	    return (opt1tag <= INSIDE || opt2tag <= INSIDE);
	}
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean intersects(double x, double y, double w, double h) {
	// Trivially reject non-existant rectangles
	if (w <= 0 || h <= 0) {
	    return false;
	}

	// Trivially accept if either endpoint is inside the rectangle
	// (not on its border since it may end there and not go inside)
	// Record where they lie with respect to the rectangle.
	//     -1 => left, 0 => inside, 1 => right
	double x1 = getX1();
	double y1 = getY1();
	int x1tag = getTag(x1, x, x+w);
	int y1tag = getTag(y1, y, y+h);
	if (x1tag == INSIDE && y1tag == INSIDE) {
	    return true;
	}
	double x2 = getX2();
	double y2 = getY2();
	int x2tag = getTag(x2, x, x+w);
	int y2tag = getTag(y2, y, y+h);
	if (x2tag == INSIDE && y2tag == INSIDE) {
	    return true;
	}
	double ctrlx = getCtrlX();
	double ctrly = getCtrlY();
	int ctrlxtag = getTag(ctrlx, x, x+w);
	int ctrlytag = getTag(ctrly, y, y+h);

	// Trivially reject if all points are entirely to one side of
	// the rectangle.
	if (x1tag < INSIDE && x2tag < INSIDE && ctrlxtag < INSIDE) {
	    return false;	// All points left
	}
	if (y1tag < INSIDE && y2tag < INSIDE && ctrlytag < INSIDE) {
	    return false;	// All points above
	}
	if (x1tag > INSIDE && x2tag > INSIDE && ctrlxtag > INSIDE) {
	    return false;	// All points right
	}
	if (y1tag > INSIDE && y2tag > INSIDE && ctrlytag > INSIDE) {
	    return false;	// All points below
	}

	// Test for endpoints on the edge where either the segment
	// or the curve is headed "inwards" from them
	// Note: These tests are a superset of the fast endpoint tests
	//       above and thus repeat those tests, but take more time
	//       and cover more cases
	if (inwards(x1tag, x2tag, ctrlxtag) &&
	    inwards(y1tag, y2tag, ctrlytag))
	{
	    // First endpoint on border with either edge moving inside
	    return true;
	}
	if (inwards(x2tag, x1tag, ctrlxtag) &&
	    inwards(y2tag, y1tag, ctrlytag))
	{
	    // Second endpoint on border with either edge moving inside
	    return true;
	}

	// Trivially accept if endpoints span directly across the rectangle
	boolean xoverlap = (x1tag * x2tag <= 0);
	boolean yoverlap = (y1tag * y2tag <= 0);
	if (x1tag == INSIDE && x2tag == INSIDE && yoverlap) {
	    return true;
	}
	if (y1tag == INSIDE && y2tag == INSIDE && xoverlap) {
	    return true;
	}

	// We now know that both endpoints are outside the rectangle
	// but the 3 points are not all on one side of the rectangle.
	// Therefore the curve cannot be contained inside the rectangle,
	// but the rectangle might be contained inside the curve, or
	// the curve might intersect the boundary of the rectangle.

	double[] eqn = new double[3];
	double[] res = new double[3];
	if (!yoverlap) {
            // Both Y coordinates for the closing segment are above or
	    // below the rectangle which means that we can only intersect
	    // if the curve crosses the top (or bottom) of the rectangle
	    // in more than one place and if those crossing locations
	    // span the horizontal range of the rectangle.
	    fillEqn(eqn, (y1tag < INSIDE ? y : y+h), y1, ctrly, y2);
	    return (solveQuadratic(eqn, res) == 2 &&
		    evalQuadratic(res, 2, true, true, null,
				  x1, ctrlx, x2) == 2 &&
		    getTag(res[0], x, x+w) * getTag(res[1], x, x+w) <= 0);
	}

	// Y ranges overlap.  Now we examine the X ranges
	if (!xoverlap) {
            // Both X coordinates for the closing segment are left of
	    // or right of the rectangle which means that we can only
	    // intersect if the curve crosses the left (or right) edge
	    // of the rectangle in more than one place and if those
	    // crossing locations span the vertical range of the rectangle.
	    fillEqn(eqn, (x1tag < INSIDE ? x : x+w), x1, ctrlx, x2);
	    return (solveQuadratic(eqn, res) == 2 &&
		    evalQuadratic(res, 2, true, true, null,
				  y1, ctrly, y2) == 2 &&
		    getTag(res[0], y, y+h) * getTag(res[1], y, y+h) <= 0);
	}

	// The X and Y ranges of the endpoints overlap the X and Y
	// ranges of the rectangle, now find out how the endpoint
	// line segment intersects the Y range of the rectangle
	double dx = x2 - x1;
	double dy = y2 - y1;
	double k = y2 * x1 - x2 * y1;
	int c1tag, c2tag;
	if (y1tag == INSIDE) {
	    c1tag = x1tag;
	} else {
	    c1tag = getTag((k + dx * (y1tag < INSIDE ? y : y+h)) / dy, x, x+w);
	}
	if (y2tag == INSIDE) {
	    c2tag = x2tag;
	} else {
	    c2tag = getTag((k + dx * (y2tag < INSIDE ? y : y+h)) / dy, x, x+w);
	}
	// If the part of the line segment that intersects the Y range
	// of the rectangle crosses it horizontally - trivially accept
	if (c1tag * c2tag <= 0) {
	    return true;
	}

	// Now we know that both the X and Y ranges intersect and that
	// the endpoint line segment does not directly cross the rectangle.
	//
	// We can almost treat this case like one of the cases above
	// where both endpoints are to one side, except that we will
	// only get one intersection of the curve with the vertical
	// side of the rectangle.  This is because the endpoint segment
	// accounts for the other intersection.
	//
	// (Remember there is overlap in both the X and Y ranges which
	//  means that the segment must cross at least one vertical edge
	//  of the rectangle - in particular, the "near vertical side" -
	//  leaving only one intersection for the curve.)
	//
	// Now we calculate the y tags of the two intersections on the
	// "near vertical side" of the rectangle.  We will have one with
	// the endpoint segment, and one with the curve.  If those two
	// vertical intersections overlap the Y range of the rectangle,
	// we have an intersection.  Otherwise, we don't.

	// c1tag = vertical intersection class of the endpoint segment
	//
	// Choose the y tag of the endpoint that was not on the same
	// side of the rectangle as the subsegment calculated above.
	// Note that we can "steal" the existing Y tag of that endpoint
	// since it will be provably the same as the vertical intersection.
	c1tag = ((c1tag * x1tag <= 0) ? y1tag : y2tag);

	// c2tag = vertical intersection class of the curve
	//
	// We have to calculate this one the straightforward way.
	// Note that the c2tag can still tell us which vertical edge
	// to test against.
	fillEqn(eqn, (c2tag < INSIDE ? x : x+w), x1, ctrlx, x2);
	int num = solveQuadratic(eqn, res);

	// Note: We should be able to assert(num == 2); since the
	// X range "crosses" (not touches) the vertical boundary,
	// but we pass num to evalQuadratic for completeness.
	evalQuadratic(res, num, true, true, null, y1, ctrly, y2);

	// Note: We can assert(num evals == 1); since one of the
	// 2 crossings will be out of the [0,1] range.
	c2tag = getTag(res[0], y, y+h);

	// Finally, we have an intersection if the two crossings
	// overlap the Y range of the rectangle.
	return (c1tag * c2tag <= 0);
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean intersects(Rectangle2D r) {
	return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(double x, double y, double w, double h) {
        if (w <= 0 || h <= 0) {
            return false;
        }
	// Assertion: Quadratic curves closed by connecting their
	// endpoints are always convex.
	return (contains(x, y) &&
		contains(x + w, y) &&
		contains(x + w, y + h) &&
		contains(x, y + h));
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(Rectangle2D r) {
	return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public Rectangle getBounds() {
	return getBounds2D().getBounds();
    }

    /**
     * Returns an iteration object that defines the boundary of the
     * shape of this <code>QuadCurve2D</code>.
     * The iterator for this class is not multi-threaded safe,
     * which means that this <code>QuadCurve2D</code> class does not
     * guarantee that modifications to the geometry of this
     * <code>QuadCurve2D</code> object do not affect any iterations of
     * that geometry that are already in process.
     * @param at an optional {@link AffineTransform} to apply to the
     *		shape boundary
     * @return a {@link PathIterator} object that defines the boundary
     *		of the shape.
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at) {
	return new QuadIterator(this, at);
    }

    /**
     * Returns an iteration object that defines the boundary of the
     * flattened shape of this <code>QuadCurve2D</code>.
     * The iterator for this class is not multi-threaded safe,
     * which means that this <code>QuadCurve2D</code> class does not
     * guarantee that modifications to the geometry of this
     * <code>QuadCurve2D</code> object do not affect any iterations of
     * that geometry that are already in process. 
     * @param at an optional <code>AffineTransform</code> to apply
     *		to the boundary of the shape
     * @param flatness the maximum distance that the control points for a 
     *		subdivided curve can be with respect to a line connecting
     * 		the end points of this curve before this curve is
     *		replaced by a straight line connecting the end points.
     * @return a <code>PathIterator</code> object that defines the 
     *		flattened boundary of the shape.
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at, double flatness) {
	return new FlatteningPathIterator(getPathIterator(at), flatness);
    }

    /**
     * Creates a new object of the same class and with the same contents 
     * as this object.
     *
     * @return     a clone of this instance.
     * @exception  OutOfMemoryError            if there is not enough memory.
     * @see        java.lang.Cloneable
     * @since      1.2
     */
    public Object clone() {
	try {
	    return super.clone();
	} catch (CloneNotSupportedException e) {
	    // this shouldn't happen, since we are Cloneable
	    throw new InternalError();
	}
    }
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar