1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/* * @(#)BandCombineOp.java 1.41 05/11/30 * * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package java.awt.image; import java.awt.GraphicsEnvironment; import java.awt.color.ICC_Profile; import java.awt.geom.Rectangle2D; import java.awt.Rectangle; import java.awt.geom.Point2D; import java.awt.RenderingHints; import sun.awt.image.ImagingLib; import java.util.Arrays; /** * This class performs an arbitrary linear combination of the bands * in a <CODE>Raster</CODE>, using a specified matrix. * <p> * The width of the matrix must be equal to the number of bands in the * source <CODE>Raster</CODE>, optionally plus one. If there is one more * column in the matrix than the number of bands, there is an implied 1 at the * end of the vector of band samples representing a pixel. The height * of the matrix must be equal to the number of bands in the destination. * <p> * For example, a 3-banded <CODE>Raster</CODE> might have the following * transformation applied to each pixel in order to invert the second band of * the <CODE>Raster</CODE>. * <pre> * [ 1.0 0.0 0.0 0.0 ] [ b1 ] * [ 0.0 -1.0 0.0 255.0 ] x [ b2 ] * [ 0.0 0.0 1.0 0.0 ] [ b3 ] * [ 1 ] * </pre> * * <p> * Note that the source and destination can be the same object. * @version 10 Feb 1997 */ public class BandCombineOp implements RasterOp { float[][] matrix; int nrows = 0; int ncols = 0; RenderingHints hints; /** * Constructs a <CODE>BandCombineOp</CODE> with the specified matrix. * The width of the matrix must be equal to the number of bands in * the source <CODE>Raster</CODE>, optionally plus one. If there is one * more column in the matrix than the number of bands, there is an implied * 1 at the end of the vector of band samples representing a pixel. The * height of the matrix must be equal to the number of bands in the * destination. * <p> * The first subscript is the row index and the second * is the column index. This operation uses none of the currently * defined rendering hints; the <CODE>RenderingHints</CODE> argument can be * null. * * @param matrix The matrix to use for the band combine operation. * @param hints The <CODE>RenderingHints</CODE> object for this operation. * Not currently used so it can be null. */ public BandCombineOp (float[][] matrix, RenderingHints hints) { nrows = matrix.length; ncols = matrix[0].length; this.matrix = new float[nrows][]; for (int i=0; i < nrows; i++) { /* Arrays.copyOf is forgiving of the source array being * too short, but it is also faster than other cloning * methods, so we provide our own protection for short * matrix rows. */ if (ncols > matrix[i].length) { throw new IndexOutOfBoundsException("row "+i+" too short"); } this.matrix[i] = Arrays.copyOf(matrix[i], ncols); } this.hints = hints; } /** * Returns a copy of the linear combination matrix. * * @return The matrix associated with this band combine operation. */ public final float[][] getMatrix() { float[][] ret = new float[nrows][]; for (int i = 0; i < nrows; i++) { ret[i] = Arrays.copyOf(matrix[i], ncols); } return ret; } /** * Transforms the <CODE>Raster</CODE> using the matrix specified in the * constructor. An <CODE>IllegalArgumentException</CODE> may be thrown if * the number of bands in the source or destination is incompatible with * the matrix. See the class comments for more details. * <p> * If the destination is null, it will be created with a number of bands * equalling the number of rows in the matrix. No exception is thrown * if the operation causes a data overflow. * * @param src The <CODE>Raster</CODE> to be filtered. * @param dst The <CODE>Raster</CODE> in which to store the results * of the filter operation. * * @return The filtered <CODE>Raster</CODE>. * * @throws IllegalArgumentException If the number of bands in the * source or destination is incompatible with the matrix. */ public WritableRaster filter(Raster src, WritableRaster dst) { int nBands = src.getNumBands(); if (ncols != nBands && ncols != (nBands+1)) { throw new IllegalArgumentException("Number of columns in the "+ "matrix ("+ncols+ ") must be equal to the number"+ " of bands ([+1]) in src ("+ nBands+")."); } if (dst == null) { dst = createCompatibleDestRaster(src); } else if (nrows != dst.getNumBands()) { throw new IllegalArgumentException("Number of rows in the "+ "matrix ("+nrows+ ") must be equal to the number"+ " of bands ([+1]) in dst ("+ nBands+")."); } if (ImagingLib.filter(this, src, dst) != null) { return dst; } int[] pixel = null; int[] dstPixel = new int[dst.getNumBands()]; float accum; int sminX = src.getMinX(); int sY = src.getMinY(); int dminX = dst.getMinX(); int dY = dst.getMinY(); int sX; int dX; if (ncols == nBands) { for (int y=0; y < src.getHeight(); y++, sY++, dY++) { dX = dminX; sX = sminX; for (int x=0; x < src.getWidth(); x++, sX++, dX++) { pixel = src.getPixel(sX, sY, pixel); for (int r=0; r < nrows; r++) { accum = 0.f; for (int c=0; c < ncols; c++) { accum += matrix[r][c]*pixel[c]; } dstPixel[r] = (int) accum; } dst.setPixel(dX, dY, dstPixel); } } } else { // Need to add constant for (int y=0; y < src.getHeight(); y++, sY++, dY++) { dX = dminX; sX = sminX; for (int x=0; x < src.getWidth(); x++, sX++, dX++) { pixel = src.getPixel(sX, sY, pixel); for (int r=0; r < nrows; r++) { accum = 0.f; for (int c=0; c < nBands; c++) { accum += matrix[r][c]*pixel[c]; } dstPixel[r] = (int) (accum+matrix[r][nBands]); } dst.setPixel(dX, dY, dstPixel); } } } return dst; } /** * Returns the bounding box of the transformed destination. Since * this is not a geometric operation, the bounding box is the same for * the source and destination. * An <CODE>IllegalArgumentException</CODE> may be thrown if the number of * bands in the source is incompatible with the matrix. See * the class comments for more details. * * @param src The <CODE>Raster</CODE> to be filtered. * * @return The <CODE>Rectangle2D</CODE> representing the destination * image's bounding box. * * @throws IllegalArgumentException If the number of bands in the source * is incompatible with the matrix. */ public final Rectangle2D getBounds2D (Raster src) { return src.getBounds(); } /** * Creates a zeroed destination <CODE>Raster</CODE> with the correct size * and number of bands. * An <CODE>IllegalArgumentException</CODE> may be thrown if the number of * bands in the source is incompatible with the matrix. See * the class comments for more details. * * @param src The <CODE>Raster</CODE> to be filtered. * * @return The zeroed destination <CODE>Raster</CODE>. */ public WritableRaster createCompatibleDestRaster (Raster src) { int nBands = src.getNumBands(); if ((ncols != nBands) && (ncols != (nBands+1))) { throw new IllegalArgumentException("Number of columns in the "+ "matrix ("+ncols+ ") must be equal to the number"+ " of bands ([+1]) in src ("+ nBands+")."); } if (src.getNumBands() == nrows) { return src.createCompatibleWritableRaster(); } else { throw new IllegalArgumentException("Don't know how to create a "+ " compatible Raster with "+ nrows+" bands."); } } /** * Returns the location of the corresponding destination point given a * point in the source <CODE>Raster</CODE>. If <CODE>dstPt</CODE> is * specified, it is used to hold the return value. * Since this is not a geometric operation, the point returned * is the same as the specified <CODE>srcPt</CODE>. * * @param srcPt The <code>Point2D</code> that represents the point in * the source <code>Raster</code> * @param dstPt The <CODE>Point2D</CODE> in which to store the result. * * @return The <CODE>Point2D</CODE> in the destination image that * corresponds to the specified point in the source image. */ public final Point2D getPoint2D (Point2D srcPt, Point2D dstPt) { if (dstPt == null) { dstPt = new Point2D.Float(); } dstPt.setLocation(srcPt.getX(), srcPt.getY()); return dstPt; } /** * Returns the rendering hints for this operation. * * @return The <CODE>RenderingHints</CODE> object associated with this * operation. Returns null if no hints have been set. */ public final RenderingHints getRenderingHints() { return hints; } }