API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.lang. Runtime View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

/*
 * @(#)Runtime.java	1.78 06/04/10
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.lang;

import java.io.*;
import java.util.StringTokenizer;

/**
 * Every Java application has a single instance of class 
 * <code>Runtime</code> that allows the application to interface with 
 * the environment in which the application is running. The current 
 * runtime can be obtained from the <code>getRuntime</code> method. 
 * <p>
 * An application cannot create its own instance of this class. 
 *
 * @author  unascribed
 * @version 1.78, 04/10/06
 * @see     java.lang.Runtime#getRuntime()
 * @since   JDK1.0
 */

public class Runtime {
    private static Runtime currentRuntime = new Runtime();

    /**
     * Returns the runtime object associated with the current Java application.
     * Most of the methods of class <code>Runtime</code> are instance 
     * methods and must be invoked with respect to the current runtime object. 
     * 
     * @return  the <code>Runtime</code> object associated with the current
     *          Java application.
     */
    public static Runtime getRuntime() { 
	return currentRuntime;
    }

    /** Don't let anyone else instantiate this class */
    private Runtime() {}

    /**
     * Terminates the currently running Java virtual machine by initiating its
     * shutdown sequence.  This method never returns normally.  The argument
     * serves as a status code; by convention, a nonzero status code indicates
     * abnormal termination.
     *
     * <p> The virtual machine's shutdown sequence consists of two phases.  In
     * the first phase all registered {@link #addShutdownHook shutdown hooks},
     * if any, are started in some unspecified order and allowed to run
     * concurrently until they finish.  In the second phase all uninvoked
     * finalizers are run if {@link #runFinalizersOnExit finalization-on-exit}
     * has been enabled.  Once this is done the virtual machine {@link #halt
     * halts}.
     *
     * <p> If this method is invoked after the virtual machine has begun its
     * shutdown sequence then if shutdown hooks are being run this method will
     * block indefinitely.  If shutdown hooks have already been run and on-exit
     * finalization has been enabled then this method halts the virtual machine
     * with the given status code if the status is nonzero; otherwise, it
     * blocks indefinitely.
     *
     * <p> The <tt>{@link System#exit(int) System.exit}</tt> method is the
     * conventional and convenient means of invoking this method. <p>
     *
     * @param  status
     *         Termination status.  By convention, a nonzero status code
     *         indicates abnormal termination.
     *
     * @throws SecurityException
     *         If a security manager is present and its <tt>{@link
     *         SecurityManager#checkExit checkExit}</tt> method does not permit
     *         exiting with the specified status
     *
     * @see java.lang.SecurityException
     * @see java.lang.SecurityManager#checkExit(int)
     * @see #addShutdownHook
     * @see #removeShutdownHook
     * @see #runFinalizersOnExit
     * @see #halt(int)
     */
    public void exit(int status) {
	SecurityManager security = System.getSecurityManager();
	if (security != null) {
	    security.checkExit(status);
	}
	Shutdown.exit(status);
    }

    /**
     * Registers a new virtual-machine shutdown hook.
     *
     * <p> The Java virtual machine <i>shuts down</i> in response to two kinds
     * of events:
     *
     *   <ul>
     *
     *   <p> <li> The program <i>exits</i> normally, when the last non-daemon
     *   thread exits or when the <tt>{@link #exit exit}</tt> (equivalently,
     *   <tt>{@link System#exit(int) System.exit}</tt>) method is invoked, or
     *
     *   <p> <li> The virtual machine is <i>terminated</i> in response to a
     *   user interrupt, such as typing <tt>^C</tt>, or a system-wide event,
     *   such as user logoff or system shutdown.
     *
     *   </ul>
     *
     * <p> A <i>shutdown hook</i> is simply an initialized but unstarted
     * thread.  When the virtual machine begins its shutdown sequence it will
     * start all registered shutdown hooks in some unspecified order and let
     * them run concurrently.  When all the hooks have finished it will then
     * run all uninvoked finalizers if finalization-on-exit has been enabled.
     * Finally, the virtual machine will halt.  Note that daemon threads will
     * continue to run during the shutdown sequence, as will non-daemon threads
     * if shutdown was initiated by invoking the <tt>{@link #exit exit}</tt>
     * method.
     *
     * <p> Once the shutdown sequence has begun it can be stopped only by
     * invoking the <tt>{@link #halt halt}</tt> method, which forcibly
     * terminates the virtual machine.
     *
     * <p> Once the shutdown sequence has begun it is impossible to register a
     * new shutdown hook or de-register a previously-registered hook.
     * Attempting either of these operations will cause an
     * <tt>{@link IllegalStateException}</tt> to be thrown.
     *
     * <p> Shutdown hooks run at a delicate time in the life cycle of a virtual
     * machine and should therefore be coded defensively.  They should, in
     * particular, be written to be thread-safe and to avoid deadlocks insofar
     * as possible.  They should also not rely blindly upon services that may
     * have registered their own shutdown hooks and therefore may themselves in
     * the process of shutting down.  Attempts to use other thread-based
     * services such as the AWT event-dispatch thread, for example, may lead to
     * deadlocks.
     *
     * <p> Shutdown hooks should also finish their work quickly.  When a
     * program invokes <tt>{@link #exit exit}</tt> the expectation is
     * that the virtual machine will promptly shut down and exit.  When the
     * virtual machine is terminated due to user logoff or system shutdown the
     * underlying operating system may only allow a fixed amount of time in
     * which to shut down and exit.  It is therefore inadvisable to attempt any
     * user interaction or to perform a long-running computation in a shutdown
     * hook.
     *
     * <p> Uncaught exceptions are handled in shutdown hooks just as in any
     * other thread, by invoking the <tt>{@link ThreadGroup#uncaughtException
     * uncaughtException}</tt> method of the thread's <tt>{@link
     * ThreadGroup}</tt> object.  The default implementation of this method
     * prints the exception's stack trace to <tt>{@link System#err}</tt> and
     * terminates the thread; it does not cause the virtual machine to exit or
     * halt.
     *
     * <p> In rare circumstances the virtual machine may <i>abort</i>, that is,
     * stop running without shutting down cleanly.  This occurs when the
     * virtual machine is terminated externally, for example with the
     * <tt>SIGKILL</tt> signal on Unix or the <tt>TerminateProcess</tt> call on
     * Microsoft Windows.  The virtual machine may also abort if a native
     * method goes awry by, for example, corrupting internal data structures or
     * attempting to access nonexistent memory.  If the virtual machine aborts
     * then no guarantee can be made about whether or not any shutdown hooks
     * will be run. <p>
     *
     * @param   hook
     *          An initialized but unstarted <tt>{@link Thread}</tt> object
     *
     * @throws  IllegalArgumentException
     *          If the specified hook has already been registered,
     *          or if it can be determined that the hook is already running or
     *          has already been run
     *
     * @throws  IllegalStateException
     *          If the virtual machine is already in the process
     *          of shutting down
     *
     * @throws  SecurityException
     *          If a security manager is present and it denies
     *          <tt>{@link RuntimePermission}("shutdownHooks")</tt>
     *
     * @see #removeShutdownHook
     * @see #halt(int)
     * @see #exit(int)
     * @since 1.3
     */
    public void addShutdownHook(Thread hook) {
	SecurityManager sm = System.getSecurityManager();
	if (sm != null) {
	    sm.checkPermission(new RuntimePermission("shutdownHooks"));
	}
	ApplicationShutdownHooks.add(hook);
    }

    /**
     * De-registers a previously-registered virtual-machine shutdown hook. <p>
     *
     * @param hook the hook to remove
     * @return <tt>true</tt> if the specified hook had previously been
     * registered and was successfully de-registered, <tt>false</tt>
     * otherwise.
     *
     * @throws  IllegalStateException
     *          If the virtual machine is already in the process of shutting
     *          down
     *
     * @throws  SecurityException
     *          If a security manager is present and it denies
     *          <tt>{@link RuntimePermission}("shutdownHooks")</tt>
     *
     * @see #addShutdownHook
     * @see #exit(int)
     * @since 1.3
     */
    public boolean removeShutdownHook(Thread hook) {
	SecurityManager sm = System.getSecurityManager();
	if (sm != null) {
	    sm.checkPermission(new RuntimePermission("shutdownHooks"));
	}
	return ApplicationShutdownHooks.remove(hook);
    }

    /**
     * Forcibly terminates the currently running Java virtual machine.  This
     * method never returns normally.
     *
     * <p> This method should be used with extreme caution.  Unlike the
     * <tt>{@link #exit exit}</tt> method, this method does not cause shutdown
     * hooks to be started and does not run uninvoked finalizers if
     * finalization-on-exit has been enabled.  If the shutdown sequence has
     * already been initiated then this method does not wait for any running
     * shutdown hooks or finalizers to finish their work. <p>
     *
     * @param  status
     *         Termination status.  By convention, a nonzero status code
     *         indicates abnormal termination.  If the <tt>{@link Runtime#exit
     *         exit}</tt> (equivalently, <tt>{@link System#exit(int)
     *         System.exit}</tt>) method has already been invoked then this
     *         status code will override the status code passed to that method.
     *
     * @throws SecurityException
     *         If a security manager is present and its <tt>{@link
     *         SecurityManager#checkExit checkExit}</tt> method does not permit
     *         an exit with the specified status
     *
     * @see #exit
     * @see #addShutdownHook
     * @see #removeShutdownHook
     * @since 1.3
     */
    public void halt(int status) {
	SecurityManager sm = System.getSecurityManager();
	if (sm != null) {
	    sm.checkExit(status);
	}
	Shutdown.halt(status);
    }

    /**
     * Enable or disable finalization on exit; doing so specifies that the
     * finalizers of all objects that have finalizers that have not yet been
     * automatically invoked are to be run before the Java runtime exits.
     * By default, finalization on exit is disabled.
     * 
     * <p>If there is a security manager, 
     * its <code>checkExit</code> method is first called
     * with 0 as its argument to ensure the exit is allowed. 
     * This could result in a SecurityException.
     *
     * @param value true to enable finalization on exit, false to disable
     * @deprecated  This method is inherently unsafe.  It may result in
     * 	    finalizers being called on live objects while other threads are
     *      concurrently manipulating those objects, resulting in erratic
     *	    behavior or deadlock.
     * 
     * @throws  SecurityException
     *        if a security manager exists and its <code>checkExit</code> 
     *        method doesn't allow the exit.
     *
     * @see     java.lang.Runtime#exit(int)
     * @see     java.lang.Runtime#gc()
     * @see     java.lang.SecurityManager#checkExit(int)
     * @since   JDK1.1
     */
@Deprecated
    public static void runFinalizersOnExit(boolean value) {
	SecurityManager security = System.getSecurityManager();
	if (security != null) {
	    try {
		security.checkExit(0); 
	    } catch (SecurityException e) {
		throw new SecurityException("runFinalizersOnExit");
	    }
	}
	Shutdown.setRunFinalizersOnExit(value);
    }

    /**
     * Executes the specified string command in a separate process.
     *
     * <p>This is a convenience method.  An invocation of the form
     * <tt>exec(command)</tt>
     * behaves in exactly the same way as the invocation
     * <tt>{@link #exec(String, String[], File) exec}(command, null, null)</tt>.
     *
     * @param   command   a specified system command.
     *
     * @return  A new {@link Process} object for managing the subprocess
     *
     * @throws  SecurityException
     *          If a security manager exists and its
     *          {@link SecurityManager#checkExec checkExec}
     *          method doesn't allow creation of the subprocess
     *
     * @throws  IOException
     *          If an I/O error occurs
     *
     * @throws  NullPointerException
     *          If <code>command</code> is <code>null</code>
     *
     * @throws  IllegalArgumentException
     *          If <code>command</code> is empty
     *
     * @see     #exec(String[], String[], File)
     * @see     ProcessBuilder
     */
    public Process exec(String command) throws IOException {
	return exec(command, null, null);
    }

    /**
     * Executes the specified string command in a separate process with the
     * specified environment.
     *
     * <p>This is a convenience method.  An invocation of the form
     * <tt>exec(command, envp)</tt>
     * behaves in exactly the same way as the invocation
     * <tt>{@link #exec(String, String[], File) exec}(command, envp, null)</tt>.
     *
     * @param   command   a specified system command.
     *
     * @param   envp      array of strings, each element of which
     *                    has environment variable settings in the format
     *                    <i>name</i>=<i>value</i>, or
     *                    <tt>null</tt> if the subprocess should inherit
     *                    the environment of the current process.
     *
     * @return  A new {@link Process} object for managing the subprocess
     *
     * @throws  SecurityException
     *          If a security manager exists and its
     *          {@link SecurityManager#checkExec checkExec}
     *          method doesn't allow creation of the subprocess
     *
     * @throws  IOException
     *          If an I/O error occurs
     *
     * @throws  NullPointerException
     *          If <code>command</code> is <code>null</code>,
     *          or one of the elements of <code>envp</code> is <code>null</code>
     *
     * @throws  IllegalArgumentException
     *          If <code>command</code> is empty
     *
     * @see     #exec(String[], String[], File)
     * @see     ProcessBuilder
     */
    public Process exec(String command, String[] envp) throws IOException {
        return exec(command, envp, null);
    }

    /**
     * Executes the specified string command in a separate process with the
     * specified environment and working directory.
     *
     * <p>This is a convenience method.  An invocation of the form
     * <tt>exec(command, envp, dir)</tt>
     * behaves in exactly the same way as the invocation
     * <tt>{@link #exec(String[], String[], File) exec}(cmdarray, envp, dir)</tt>,
     * where <code>cmdarray</code> is an array of all the tokens in
     * <code>command</code>.
     *
     * <p>More precisely, the <code>command</code> string is broken
     * into tokens using a {@link StringTokenizer} created by the call
     * <code>new {@link StringTokenizer}(command)</code> with no
     * further modification of the character categories.  The tokens
     * produced by the tokenizer are then placed in the new string
     * array <code>cmdarray</code>, in the same order.
     *
     * @param   command   a specified system command.
     *
     * @param   envp      array of strings, each element of which
     *                    has environment variable settings in the format
     *                    <i>name</i>=<i>value</i>, or
     *                    <tt>null</tt> if the subprocess should inherit
     *                    the environment of the current process.
     *
     * @param   dir       the working directory of the subprocess, or
     *                    <tt>null</tt> if the subprocess should inherit
     *                    the working directory of the current process.
     *
     * @return  A new {@link Process} object for managing the subprocess
     *
     * @throws  SecurityException
     *          If a security manager exists and its
     *          {@link SecurityManager#checkExec checkExec}
     *          method doesn't allow creation of the subprocess
     *
     * @throws  IOException
     *          If an I/O error occurs
     *
     * @throws  NullPointerException
     *          If <code>command</code> is <code>null</code>,
     *          or one of the elements of <code>envp</code> is <code>null</code>
     *
     * @throws  IllegalArgumentException
     *          If <code>command</code> is empty
     *
     * @see     ProcessBuilder
     * @since 1.3
     */
    public Process exec(String command, String[] envp, File dir)
        throws IOException {
        if (command.length() == 0)
            throw new IllegalArgumentException("Empty command");

	StringTokenizer st = new StringTokenizer(command);
	String[] cmdarray = new String[st.countTokens()];
 	for (int i = 0; st.hasMoreTokens(); i++)
	    cmdarray[i] = st.nextToken();
	return exec(cmdarray, envp, dir);
    }

    /**
     * Executes the specified command and arguments in a separate process.
     *
     * <p>This is a convenience method.  An invocation of the form
     * <tt>exec(cmdarray)</tt>
     * behaves in exactly the same way as the invocation
     * <tt>{@link #exec(String[], String[], File) exec}(cmdarray, null, null)</tt>.
     *
     * @param   cmdarray  array containing the command to call and
     *                    its arguments.
     *
     * @return  A new {@link Process} object for managing the subprocess
     *
     * @throws  SecurityException
     *          If a security manager exists and its
     *          {@link SecurityManager#checkExec checkExec}
     *          method doesn't allow creation of the subprocess
     *
     * @throws  IOException
     *          If an I/O error occurs
     *
     * @throws  NullPointerException
     *          If <code>cmdarray</code> is <code>null</code>,
     *          or one of the elements of <code>cmdarray</code> is <code>null</code>
     *
     * @throws  IndexOutOfBoundsException
     *          If <code>cmdarray</code> is an empty array
     *          (has length <code>0</code>)
     *
     * @see     ProcessBuilder
     */
    public Process exec(String cmdarray[]) throws IOException {
	return exec(cmdarray, null, null);
    }

    /**
     * Executes the specified command and arguments in a separate process
     * with the specified environment.
     *
     * <p>This is a convenience method.  An invocation of the form
     * <tt>exec(cmdarray, envp)</tt>
     * behaves in exactly the same way as the invocation
     * <tt>{@link #exec(String[], String[], File) exec}(cmdarray, envp, null)</tt>.
     *
     * @param   cmdarray  array containing the command to call and
     *                    its arguments.
     *
     * @param   envp      array of strings, each element of which
     *                    has environment variable settings in the format
     *                    <i>name</i>=<i>value</i>, or
     *                    <tt>null</tt> if the subprocess should inherit
     *                    the environment of the current process.
     *
     * @return  A new {@link Process} object for managing the subprocess
     *
     * @throws  SecurityException
     *          If a security manager exists and its
     *          {@link SecurityManager#checkExec checkExec}
     *          method doesn't allow creation of the subprocess
     *
     * @throws  IOException
     *          If an I/O error occurs
     *
     * @throws  NullPointerException
     *          If <code>cmdarray</code> is <code>null</code>,
     *          or one of the elements of <code>cmdarray</code> is <code>null</code>,
     *          or one of the elements of <code>envp</code> is <code>null</code>
     *
     * @throws  IndexOutOfBoundsException
     *          If <code>cmdarray</code> is an empty array
     *          (has length <code>0</code>)
     *
     * @see     ProcessBuilder
     */
    public Process exec(String[] cmdarray, String[] envp) throws IOException {
	return exec(cmdarray, envp, null);
    }


    /**
     * Executes the specified command and arguments in a separate process with
     * the specified environment and working directory.
     *
     * <p>Given an array of strings <code>cmdarray</code>, representing the
     * tokens of a command line, and an array of strings <code>envp</code>,
     * representing "environment" variable settings, this method creates
     * a new process in which to execute the specified command.
     *
     * <p>This method checks that <code>cmdarray</code> is a valid operating
     * system command.  Which commands are valid is system-dependent,
     * but at the very least the command must be a non-empty list of
     * non-null strings.
     *
     * <p>If <tt>envp</tt> is <tt>null</tt>, the subprocess inherits the
     * environment settings of the current process.
     *
     * <p>{@link ProcessBuilder#start()} is now the preferred way to
     * start a process with a modified environment.
     *
     * <p>The working directory of the new subprocess is specified by <tt>dir</tt>.
     * If <tt>dir</tt> is <tt>null</tt>, the subprocess inherits the
     * current working directory of the current process.
     *
     * <p>If a security manager exists, its
     * {@link SecurityManager#checkExec checkExec}
     * method is invoked with the first component of the array
     * <code>cmdarray</code> as its argument. This may result in a
     * {@link SecurityException} being thrown.
     *
     * <p>Starting an operating system process is highly system-dependent.
     * Among the many things that can go wrong are:
     * <ul>
     * <li>The operating system program file was not found.
     * <li>Access to the program file was denied.
     * <li>The working directory does not exist.
     * </ul>
     *
     * <p>In such cases an exception will be thrown.  The exact nature
     * of the exception is system-dependent, but it will always be a
     * subclass of {@link IOException}.
     *
     *
     * @param   cmdarray  array containing the command to call and
     *                    its arguments.
     *
     * @param   envp      array of strings, each element of which
     *                    has environment variable settings in the format
     *                    <i>name</i>=<i>value</i>, or
     *                    <tt>null</tt> if the subprocess should inherit
     *                    the environment of the current process.
     *
     * @param   dir       the working directory of the subprocess, or
     *                    <tt>null</tt> if the subprocess should inherit
     *                    the working directory of the current process.
     *
     * @return  A new {@link Process} object for managing the subprocess
     *
     * @throws  SecurityException
     *          If a security manager exists and its
     *          {@link SecurityManager#checkExec checkExec}
     *          method doesn't allow creation of the subprocess
     *
     * @throws  IOException
     *          If an I/O error occurs
     *
     * @throws  NullPointerException
     *          If <code>cmdarray</code> is <code>null</code>,
     *          or one of the elements of <code>cmdarray</code> is <code>null</code>,
     *          or one of the elements of <code>envp</code> is <code>null</code>
     *
     * @throws  IndexOutOfBoundsException
     *          If <code>cmdarray</code> is an empty array
     *          (has length <code>0</code>)
     *
     * @see     ProcessBuilder
     * @since 1.3
     */
    public Process exec(String[] cmdarray, String[] envp, File dir)
	throws IOException {
	return new ProcessBuilder(cmdarray)
	    .environment(envp)
	    .directory(dir)
	    .start();
    }

    /**
     * Returns the number of processors available to the Java virtual machine.
     *
     * <p> This value may change during a particular invocation of the virtual
     * machine.  Applications that are sensitive to the number of available
     * processors should therefore occasionally poll this property and adjust
     * their resource usage appropriately. </p>
     *
     * @return  the maximum number of processors available to the virtual
     *          machine; never smaller than one
     * @since 1.4
     */
    public native int availableProcessors();

    /**
     * Returns the amount of free memory in the Java Virtual Machine.
     * Calling the 
     * <code>gc</code> method may result in increasing the value returned 
     * by <code>freeMemory.</code>
     *
     * @return  an approximation to the total amount of memory currently
     *          available for future allocated objects, measured in bytes.
     */
    public native long freeMemory();

    /**
     * Returns the total amount of memory in the Java virtual machine.
     * The value returned by this method may vary over time, depending on 
     * the host environment.
     * <p>
     * Note that the amount of memory required to hold an object of any 
     * given type may be implementation-dependent.
     * 
     * @return  the total amount of memory currently available for current 
     *          and future objects, measured in bytes.
     */
    public native long totalMemory();

    /**
     * Returns the maximum amount of memory that the Java virtual machine will
     * attempt to use.  If there is no inherent limit then the value {@link
     * java.lang.Long#MAX_VALUE} will be returned. </p>
     *
     * @return  the maximum amount of memory that the virtual machine will
     *          attempt to use, measured in bytes
     * @since 1.4
     */
    public native long maxMemory();

    /**
     * Runs the garbage collector.
     * Calling this method suggests that the Java virtual machine expend 
     * effort toward recycling unused objects in order to make the memory 
     * they currently occupy available for quick reuse. When control 
     * returns from the method call, the virtual machine has made 
     * its best effort to recycle all discarded objects. 
     * <p>
     * The name <code>gc</code> stands for "garbage 
     * collector". The virtual machine performs this recycling 
     * process automatically as needed, in a separate thread, even if the 
     * <code>gc</code> method is not invoked explicitly.
     * <p>
     * The method {@link System#gc()} is the conventional and convenient 
     * means of invoking this method. 
     */
    public native void gc();

    /* Wormhole for calling java.lang.ref.Finalizer.runFinalization */
    private static native void runFinalization0();

    /**
     * Runs the finalization methods of any objects pending finalization.
     * Calling this method suggests that the Java virtual machine expend 
     * effort toward running the <code>finalize</code> methods of objects 
     * that have been found to be discarded but whose <code>finalize</code> 
     * methods have not yet been run. When control returns from the 
     * method call, the virtual machine has made a best effort to 
     * complete all outstanding finalizations. 
     * <p>
     * The virtual machine performs the finalization process 
     * automatically as needed, in a separate thread, if the 
     * <code>runFinalization</code> method is not invoked explicitly. 
     * <p>
     * The method {@link System#runFinalization()} is the conventional 
     * and convenient means of invoking this method.
     *
     * @see     java.lang.Object#finalize()
     */
    public void runFinalization() {
	runFinalization0();
    }

    /**
     * Enables/Disables tracing of instructions.
     * If the <code>boolean</code> argument is <code>true</code>, this 
     * method suggests that the Java virtual machine emit debugging 
     * information for each instruction in the virtual machine as it 
     * is executed. The format of this information, and the file or other 
     * output stream to which it is emitted, depends on the host environment. 
     * The virtual machine may ignore this request if it does not support 
     * this feature. The destination of the trace output is system 
     * dependent. 
     * <p>
     * If the <code>boolean</code> argument is <code>false</code>, this 
     * method causes the virtual machine to stop performing the 
     * detailed instruction trace it is performing.
     *
     * @param   on   <code>true</code> to enable instruction tracing;
     *               <code>false</code> to disable this feature.
     */
    public native void traceInstructions(boolean on);

    /**
     * Enables/Disables tracing of method calls.
     * If the <code>boolean</code> argument is <code>true</code>, this 
     * method suggests that the Java virtual machine emit debugging 
     * information for each method in the virtual machine as it is 
     * called. The format of this information, and the file or other output 
     * stream to which it is emitted, depends on the host environment. The 
     * virtual machine may ignore this request if it does not support 
     * this feature.  
     * <p>
     * Calling this method with argument false suggests that the
     * virtual machine cease emitting per-call debugging information.
     *
     * @param   on   <code>true</code> to enable instruction tracing;
     *               <code>false</code> to disable this feature.
     */
    public native void traceMethodCalls(boolean on);

    /**
     * Loads the specified filename as a dynamic library. The filename 
     * argument must be a complete path name,
     * (for example
     * <code>Runtime.getRuntime().load("/home/avh/lib/libX11.so");</code>).
     * <p>
     * First, if there is a security manager, its <code>checkLink</code> 
     * method is called with the <code>filename</code> as its argument. 
     * This may result in a security exception. 
     * <p>
     * This is similar to the method {@link #loadLibrary(String)}, but it 
     * accepts a general file name as an argument rather than just a library 
     * name, allowing any file of native code to be loaded.
     * <p>
     * The method {@link System#load(String)} is the conventional and 
     * convenient means of invoking this method.
     *
     * @param      filename   the file to load.
     * @exception  SecurityException  if a security manager exists and its  
     *             <code>checkLink</code> method doesn't allow 
     *             loading of the specified dynamic library
     * @exception  UnsatisfiedLinkError  if the file does not exist.
     * @exception  NullPointerException if <code>filename</code> is
     *             <code>null</code>
     * @see        java.lang.Runtime#getRuntime()
     * @see        java.lang.SecurityException
     * @see        java.lang.SecurityManager#checkLink(java.lang.String)
     */
    public void load(String filename) {
        load0(System.getCallerClass(), filename);
    }

    synchronized void load0(Class fromClass, String filename) {
	SecurityManager security = System.getSecurityManager();
	if (security != null) {
	    security.checkLink(filename);
	}
	if (!(new File(filename).isAbsolute())) {
	    throw new UnsatisfiedLinkError(
	        "Expecting an absolute path of the library: " + filename);
	}
	ClassLoader.loadLibrary(fromClass, filename, true);
    }

    /**
     * Loads the dynamic library with the specified library name. 
     * A file containing native code is loaded from the local file system 
     * from a place where library files are conventionally obtained. The 
     * details of this process are implementation-dependent. The 
     * mapping from a library name to a specific filename is done in a 
     * system-specific manner. 
     * <p>
     * First, if there is a security manager, its <code>checkLink</code> 
     * method is called with the <code>libname</code> as its argument. 
     * This may result in a security exception. 
     * <p>
     * The method {@link System#loadLibrary(String)} is the conventional 
     * and convenient means of invoking this method. If native
     * methods are to be used in the implementation of a class, a standard 
     * strategy is to put the native code in a library file (call it 
     * <code>LibFile</code>) and then to put a static initializer:
     * <blockquote><pre>
     * static { System.loadLibrary("LibFile"); }
     * </pre></blockquote>
     * within the class declaration. When the class is loaded and 
     * initialized, the necessary native code implementation for the native 
     * methods will then be loaded as well. 
     * <p>
     * If this method is called more than once with the same library 
     * name, the second and subsequent calls are ignored. 
     *
     * @param      libname   the name of the library.
     * @exception  SecurityException  if a security manager exists and its  
     *             <code>checkLink</code> method doesn't allow 
     *             loading of the specified dynamic library
     * @exception  UnsatisfiedLinkError  if the library does not exist.
     * @exception  NullPointerException if <code>libname</code> is
     *             <code>null</code>
     * @see        java.lang.SecurityException
     * @see        java.lang.SecurityManager#checkLink(java.lang.String)
     */
    public void loadLibrary(String libname) {
        loadLibrary0(System.getCallerClass(), libname); 
    }

    synchronized void loadLibrary0(Class fromClass, String libname) {
	SecurityManager security = System.getSecurityManager();
	if (security != null) {
	    security.checkLink(libname);
	}
	if (libname.indexOf((int)File.separatorChar) != -1) {
	    throw new UnsatisfiedLinkError(
    "Directory separator should not appear in library name: " + libname);
	}
	ClassLoader.loadLibrary(fromClass, libname, false);
    }

    /**
     * Creates a localized version of an input stream. This method takes 
     * an <code>InputStream</code> and returns an <code>InputStream</code> 
     * equivalent to the argument in all respects except that it is 
     * localized: as characters in the local character set are read from 
     * the stream, they are automatically converted from the local 
     * character set to Unicode. 
     * <p>
     * If the argument is already a localized stream, it may be returned 
     * as the result. 
     *
     * @param      in InputStream to localize
     * @return     a localized input stream
     * @see        java.io.InputStream
     * @see        java.io.BufferedReader#BufferedReader(java.io.Reader)
     * @see        java.io.InputStreamReader#InputStreamReader(java.io.InputStream)
     * @deprecated As of JDK&nbsp;1.1, the preferred way to translate a byte
     * stream in the local encoding into a character stream in Unicode is via
     * the <code>InputStreamReader</code> and <code>BufferedReader</code>
     * classes.
     */
@Deprecated
    public InputStream getLocalizedInputStream(InputStream in) {
	return in;
    }

    /**
     * Creates a localized version of an output stream. This method 
     * takes an <code>OutputStream</code> and returns an 
     * <code>OutputStream</code> equivalent to the argument in all respects 
     * except that it is localized: as Unicode characters are written to 
     * the stream, they are automatically converted to the local 
     * character set. 
     * <p>
     * If the argument is already a localized stream, it may be returned 
     * as the result. 
     *
     * @deprecated As of JDK&nbsp;1.1, the preferred way to translate a
     * Unicode character stream into a byte stream in the local encoding is via
     * the <code>OutputStreamWriter</code>, <code>BufferedWriter</code>, and
     * <code>PrintWriter</code> classes.
     *
     * @param      out OutputStream to localize
     * @return     a localized output stream
     * @see        java.io.OutputStream
     * @see        java.io.BufferedWriter#BufferedWriter(java.io.Writer)
     * @see        java.io.OutputStreamWriter#OutputStreamWriter(java.io.OutputStream)
     * @see        java.io.PrintWriter#PrintWriter(java.io.OutputStream)
     */
@Deprecated
    public OutputStream getLocalizedOutputStream(OutputStream out) {
	return out;
    }

}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar