/*
* @(#)BigDecimal.java 1.64 06/11/28
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
/*
* @(#)BigDecimal.java 1.x 01/xx/xx
*
* Copyright 1996-2001 Sun Microsystems, Inc. All Rights Reserved.
* Portions Copyright IBM Corporation, 2001. All Rights Reserved.
*
* This software is the proprietary information of Sun Microsystems, Inc.
* Use is subject to license terms.
*
*/
package java.math;
/**
* Immutable, arbitrary-precision signed decimal numbers. A
* <tt>BigDecimal</tt> consists of an arbitrary precision integer
* <i>unscaled value</i> and a 32-bit integer <i>scale</i>. If zero
* or positive, the scale is the number of digits to the right of the
* decimal point. If negative, the unscaled value of the number is
* multiplied by ten to the power of the negation of the scale. The
* value of the number represented by the <tt>BigDecimal</tt> is
* therefore <tt>(unscaledValue × 10<sup>-scale</sup>)</tt>.
*
* <p>The <tt>BigDecimal</tt> class provides operations for
* arithmetic, scale manipulation, rounding, comparison, hashing, and
* format conversion. The {@link #toString} method provides a
* canonical representation of a <tt>BigDecimal</tt>.
*
* <p>The <tt>BigDecimal</tt> class gives its user complete control
* over rounding behavior. If no rounding mode is specified and the
* exact result cannot be represented, an exception is thrown;
* otherwise, calculations can be carried out to a chosen precision
* and rounding mode by supplying an appropriate {@link MathContext}
* object to the operation. In either case, eight <em>rounding
* modes</em> are provided for the control of rounding. Using the
* integer fields in this class (such as {@link #ROUND_HALF_UP}) to
* represent rounding mode is largely obsolete; the enumeration values
* of the <tt>RoundingMode</tt> <tt>enum</tt>, (such as {@link
* RoundingMode#HALF_UP}) should be used instead.
*
* <p>When a <tt>MathContext</tt> object is supplied with a precision
* setting of 0 (for example, {@link MathContext#UNLIMITED}),
* arithmetic operations are exact, as are the arithmetic methods
* which take no <tt>MathContext</tt> object. (This is the only
* behavior that was supported in releases prior to 5.) As a
* corollary of computing the exact result, the rounding mode setting
* of a <tt>MathContext</tt> object with a precision setting of 0 is
* not used and thus irrelevant. In the case of divide, the exact
* quotient could have an infinitely long decimal expansion; for
* example, 1 divided by 3. If the quotient has a nonterminating
* decimal expansion and the operation is specified to return an exact
* result, an <tt>ArithmeticException</tt> is thrown. Otherwise, the
* exact result of the division is returned, as done for other
* operations.
*
* <p>When the precision setting is not 0, the rules of
* <tt>BigDecimal</tt> arithmetic are broadly compatible with selected
* modes of operation of the arithmetic defined in ANSI X3.274-1996
* and ANSI X3.274-1996/AM 1-2000 (section 7.4). Unlike those
* standards, <tt>BigDecimal</tt> includes many rounding modes, which
* were mandatory for division in <tt>BigDecimal</tt> releases prior
* to 5. Any conflicts between these ANSI standards and the
* <tt>BigDecimal</tt> specification are resolved in favor of
* <tt>BigDecimal</tt>.
*
* <p>Since the same numerical value can have different
* representations (with different scales), the rules of arithmetic
* and rounding must specify both the numerical result and the scale
* used in the result's representation.
*
*
* <p>In general the rounding modes and precision setting determine
* how operations return results with a limited number of digits when
* the exact result has more digits (perhaps infinitely many in the
* case of division) than the number of digits returned.
*
* First, the
* total number of digits to return is specified by the
* <tt>MathContext</tt>'s <tt>precision</tt> setting; this determines
* the result's <i>precision</i>. The digit count starts from the
* leftmost nonzero digit of the exact result. The rounding mode
* determines how any discarded trailing digits affect the returned
* result.
*
* <p>For all arithmetic operators , the operation is carried out as
* though an exact intermediate result were first calculated and then
* rounded to the number of digits specified by the precision setting
* (if necessary), using the selected rounding mode. If the exact
* result is not returned, some digit positions of the exact result
* are discarded. When rounding increases the magnitude of the
* returned result, it is possible for a new digit position to be
* created by a carry propagating to a leading "9" digit.
* For example, rounding the value 999.9 to three digits rounding up
* would be numerically equal to one thousand, represented as
* 100×10<sup>1</sup>. In such cases, the new "1" is
* the leading digit position of the returned result.
*
* <p>Besides a logical exact result, each arithmetic operation has a
* preferred scale for representing a result. The preferred
* scale for each operation is listed in the table below.
*
* <table border>
* <caption top><h3>Preferred Scales for Results of Arithmetic Operations
* </h3></caption>
* <tr><th>Operation</th><th>Preferred Scale of Result</th></tr>
* <tr><td>Add</td><td>max(addend.scale(), augend.scale())</td>
* <tr><td>Subtract</td><td>max(minuend.scale(), subtrahend.scale())</td>
* <tr><td>Multiply</td><td>multiplier.scale() + multiplicand.scale()</td>
* <tr><td>Divide</td><td>dividend.scale() - divisor.scale()</td>
* </table>
*
* These scales are the ones used by the methods which return exact
* arithmetic results; except that an exact divide may have to use a
* larger scale since the exact result may have more digits. For
* example, <tt>1/32</tt> is <tt>0.03125</tt>.
*
* <p>Before rounding, the scale of the logical exact intermediate
* result is the preferred scale for that operation. If the exact
* numerical result cannot be represented in <code>precision</code>
* digits, rounding selects the set of digits to return and the scale
* of the result is reduced from the scale of the intermediate result
* to the least scale which can represent the <code>precision</code>
* digits actually returned. If the exact result can be represented
* with at most <code>precision</code> digits, the representation
* of the result with the scale closest to the preferred scale is
* returned. In particular, an exactly representable quotient may be
* represented in fewer than <code>precision</code> digits by removing
* trailing zeros and decreasing the scale. For example, rounding to
* three digits using the {@linkplain RoundingMode#FLOOR floor}
* rounding mode, <br>
*
* <code>19/100 = 0.19 // integer=19, scale=2</code> <br>
*
* but<br>
*
* <code>21/110 = 0.190 // integer=190, scale=3</code> <br>
*
* <p>Note that for add, subtract, and multiply, the reduction in
* scale will equal the number of digit positions of the exact result
* which are discarded. If the rounding causes a carry propagation to
* create a new high-order digit position, an additional digit of the
* result is discarded than when no new digit position is created.
*
* <p>Other methods may have slightly different rounding semantics.
* For example, the result of the <tt>pow</tt> method using the
* {@linkplain #pow(int, MathContext) specified algorithm} can
* occasionally differ from the rounded mathematical result by more
* than one unit in the last place, one <i>{@linkplain #ulp() ulp}</i>.
*
* <p>Two types of operations are provided for manipulating the scale
* of a <tt>BigDecimal</tt>: scaling/rounding operations and decimal
* point motion operations. Scaling/rounding operations ({@link
* #setScale setScale} and {@link #round round}) return a
* <tt>BigDecimal</tt> whose value is approximately (or exactly) equal
* to that of the operand, but whose scale or precision is the
* specified value; that is, they increase or decrease the precision
* of the stored number with minimal effect on its value. Decimal
* point motion operations ({@link #movePointLeft movePointLeft} and
* {@link #movePointRight movePointRight}) return a
* <tt>BigDecimal</tt> created from the operand by moving the decimal
* point a specified distance in the specified direction.
*
* <p>For the sake of brevity and clarity, pseudo-code is used
* throughout the descriptions of <tt>BigDecimal</tt> methods. The
* pseudo-code expression <tt>(i + j)</tt> is shorthand for "a
* <tt>BigDecimal</tt> whose value is that of the <tt>BigDecimal</tt>
* <tt>i</tt> added to that of the <tt>BigDecimal</tt>
* <tt>j</tt>." The pseudo-code expression <tt>(i == j)</tt> is
* shorthand for "<tt>true</tt> if and only if the
* <tt>BigDecimal</tt> <tt>i</tt> represents the same value as the
* <tt>BigDecimal</tt> <tt>j</tt>." Other pseudo-code expressions
* are interpreted similarly. Square brackets are used to represent
* the particular <tt>BigInteger</tt> and scale pair defining a
* <tt>BigDecimal</tt> value; for example [19, 2] is the
* <tt>BigDecimal</tt> numerically equal to 0.19 having a scale of 2.
*
* <p>Note: care should be exercised if <tt>BigDecimal</tt> objects
* are used as keys in a {@link java.util.SortedMap SortedMap} or
* elements in a {@link java.util.SortedSet SortedSet} since
* <tt>BigDecimal</tt>'s <i>natural ordering</i> is <i>inconsistent
* with equals</i>. See {@link Comparable}, {@link
* java.util.SortedMap} or {@link java.util.SortedSet} for more
* information.
*
* <p>All methods and constructors for this class throw
* <tt>NullPointerException</tt> when passed a <tt>null</tt> object
* reference for any input parameter.
*
* @see BigInteger
* @see MathContext
* @see RoundingMode
* @see java.util.SortedMap
* @see java.util.SortedSet
* @author Josh Bloch
* @author Mike Cowlishaw
* @author Joseph D. Darcy
*/
public class BigDecimal extends Number implements Comparable<BigDecimal> {
/**
* The unscaled value of this BigDecimal, as returned by {@link
* #unscaledValue}.
*
* @serial
* @see #unscaledValue
*/
private volatile BigInteger intVal;
/**
* The scale of this BigDecimal, as returned by {@link #scale}.
*
* @serial
* @see #scale
*/
private int scale = 0; // Note: this may have any value, so
// calculations must be done in longs
/**
* The number of decimal digits in this BigDecimal, or 0 if the
* number of digits are not known (lookaside information). If
* nonzero, the value is guaranteed correct. Use the precision()
* method to obtain and set the value if it might be 0. This
* field is mutable until set nonzero.
*
* @since 1.5
*/
private volatile transient int precision = 0;
/**
* Used to store the canonical string representation, if computed.
*/
private volatile transient String stringCache = null;
/**
* Sentinel value for {@link #intCompact} indicating the
* significand information is only available from {@code intVal}.
*/
private static final long INFLATED = Long.MIN_VALUE;
/**
* If the absolute value of the significand of this BigDecimal is
* less than or equal to {@code Long.MAX_VALUE}, the value can be
* compactly stored in this field and used in computations.
*/
private transient long intCompact = INFLATED;
// All 18-digit base ten strings fit into a long; not all 19-digit
// strings will
private static final int MAX_COMPACT_DIGITS = 18;
private static final int MAX_BIGINT_BITS = 62;
/* Appease the serialization gods */
private static final long serialVersionUID = 6108874887143696463L;
// Cache of common small BigDecimal values.
private static final BigDecimal zeroThroughTen[] = {
new BigDecimal(BigInteger.ZERO, 0, 0),
new BigDecimal(BigInteger.ONE, 1, 0),
new BigDecimal(BigInteger.valueOf(2), 2, 0),
new BigDecimal(BigInteger.valueOf(3), 3, 0),
new BigDecimal(BigInteger.valueOf(4), 4, 0),
new BigDecimal(BigInteger.valueOf(5), 5, 0),
new BigDecimal(BigInteger.valueOf(6), 6, 0),
new BigDecimal(BigInteger.valueOf(7), 7, 0),
new BigDecimal(BigInteger.valueOf(8), 8, 0),
new BigDecimal(BigInteger.valueOf(9), 9, 0),
new BigDecimal(BigInteger.TEN, 10, 0),
};
// Constants
/**
* The value 0, with a scale of 0.
*
* @since 1.5
*/
public static final BigDecimal ZERO =
zeroThroughTen[0];
/**
* The value 1, with a scale of 0.
*
* @since 1.5
*/
public static final BigDecimal ONE =
zeroThroughTen[1];
/**
* The value 10, with a scale of 0.
*
* @since 1.5
*/
public static final BigDecimal TEN =
zeroThroughTen[10];
// Constructors
/**
* Translates a character array representation of a
* <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
* same sequence of characters as the {@link #BigDecimal(String)}
* constructor, while allowing a sub-array to be specified.
*
* <p>Note that if the sequence of characters is already available
* within a character array, using this constructor is faster than
* converting the <tt>char</tt> array to string and using the
* <tt>BigDecimal(String)</tt> constructor .
*
* @param in <tt>char</tt> array that is the source of characters.
* @param offset first character in the array to inspect.
* @param len number of characters to consider.
* @throws NumberFormatException if <tt>in</tt> is not a valid
* representation of a <tt>BigDecimal</tt> or the defined subarray
* is not wholly within <tt>in</tt>.
* @since 1.5
*/
public BigDecimal(char[] in, int offset, int len) {
// This is the primary string to BigDecimal constructor; all
// incoming strings end up here; it uses explicit (inline)
// parsing for speed and generates at most one intermediate
// (temporary) object (a char[] array).
// use array bounds checking to handle too-long, len == 0,
// bad offset, etc.
try {
// handle the sign
boolean isneg = false; // assume positive
if (in[offset] == '-') {
isneg = true; // leading minus means negative
offset++;
len--;
} else if (in[offset] == '+') { // leading + allowed
offset++;
len--;
}
// should now be at numeric part of the significand
int dotoff = -1; // '.' offset, -1 if none
int cfirst = offset; // record start of integer
long exp = 0; // exponent
if (len > in.length) // protect against huge length
throw new NumberFormatException();
char coeff[] = new char[len]; // integer significand array
char c; // work
for (; len > 0; offset++, len--) {
c = in[offset];
if ((c >= '0' && c <= '9') || Character.isDigit(c)) {
// have digit
coeff[precision] = c;
precision++; // count of digits
continue;
}
if (c == '.') {
// have dot
if (dotoff >= 0) // two dots
throw new NumberFormatException();
dotoff = offset;
continue;
}
// exponent expected
if ((c != 'e') && (c != 'E'))
throw new NumberFormatException();
offset++;
c = in[offset];
len--;
boolean negexp = false;
// optional sign
if (c == '-' || c == '+') {
negexp = (c == '-');
offset++;
c = in[offset];
len--;
}
if (len <= 0) // no exponent digits
throw new NumberFormatException();
// skip leading zeros in the exponent
while (len > 10 && Character.digit(c, 10) == 0) {
offset++;
c = in[offset];
len--;
}
if (len > 10) // too many nonzero exponent digits
throw new NumberFormatException();
// c now holds first digit of exponent
for (;; len--) {
int v;
if (c >= '0' && c <= '9') {
v = c - '0';
} else {
v = Character.digit(c, 10);
if (v < 0) // not a digit
throw new NumberFormatException();
}
exp = exp * 10 + v;
if (len == 1)
break; // that was final character
offset++;
c = in[offset];
}
if (negexp) // apply sign
exp = -exp;
// Next test is required for backwards compatibility
if ((int)exp != exp) // overflow
throw new NumberFormatException();
break; // [saves a test]
}
// here when no characters left
if (precision == 0) // no digits found
throw new NumberFormatException();
if (dotoff >= 0) { // had dot; set scale
scale = precision - (dotoff - cfirst);
// [cannot overflow]
}
if (exp != 0) { // had significant exponent
try {
scale = checkScale(-exp + scale); // adjust
} catch (ArithmeticException e) {
throw new NumberFormatException("Scale out of range.");
}
}
// Remove leading zeros from precision (digits count)
int first = 0;
for (; (coeff[first] == '0' || Character.digit(coeff[first], 10) == 0) &&
precision > 1;
first++)
precision--;
// Set the significand ..
// Copy significand to exact-sized array, with sign if
// negative
// Later use: BigInteger(coeff, first, precision) for
// both cases, by allowing an extra char at the front of
// coeff.
char quick[];
if (!isneg) {
quick = new char[precision];
System.arraycopy(coeff, first, quick, 0, precision);
} else {
quick = new char[precision+1];
quick[0] = '-';
System.arraycopy(coeff, first, quick, 1, precision);
}
if (precision <= MAX_COMPACT_DIGITS)
intCompact = Long.parseLong(new String(quick));
else
intVal = new BigInteger(quick);
// System.out.println(" new: " +intVal+" ["+scale+"] "+precision);
} catch (ArrayIndexOutOfBoundsException e) {
throw new NumberFormatException();
} catch (NegativeArraySizeException e) {
throw new NumberFormatException();
}
}
/**
* Translates a character array representation of a
* <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
* same sequence of characters as the {@link #BigDecimal(String)}
* constructor, while allowing a sub-array to be specified and
* with rounding according to the context settings.
*
* <p>Note that if the sequence of characters is already available
* within a character array, using this constructor is faster than
* converting the <tt>char</tt> array to string and using the
* <tt>BigDecimal(String)</tt> constructor .
*
* @param in <tt>char</tt> array that is the source of characters.
* @param offset first character in the array to inspect.
* @param len number of characters to consider..
* @param mc the context to use.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @throws NumberFormatException if <tt>in</tt> is not a valid
* representation of a <tt>BigDecimal</tt> or the defined subarray
* is not wholly within <tt>in</tt>.
* @since 1.5
*/
public BigDecimal(char[] in, int offset, int len, MathContext mc) {
this(in, offset, len);
if (mc.precision > 0)
roundThis(mc);
}
/**
* Translates a character array representation of a
* <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
* same sequence of characters as the {@link #BigDecimal(String)}
* constructor.
*
* <p>Note that if the sequence of characters is already available
* as a character array, using this constructor is faster than
* converting the <tt>char</tt> array to string and using the
* <tt>BigDecimal(String)</tt> constructor .
*
* @param in <tt>char</tt> array that is the source of characters.
* @throws NumberFormatException if <tt>in</tt> is not a valid
* representation of a <tt>BigDecimal</tt>.
* @since 1.5
*/
public BigDecimal(char[] in) {
this(in, 0, in.length);
}
/**
* Translates a character array representation of a
* <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
* same sequence of characters as the {@link #BigDecimal(String)}
* constructor and with rounding according to the context
* settings.
*
* <p>Note that if the sequence of characters is already available
* as a character array, using this constructor is faster than
* converting the <tt>char</tt> array to string and using the
* <tt>BigDecimal(String)</tt> constructor .
*
* @param in <tt>char</tt> array that is the source of characters.
* @param mc the context to use.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @throws NumberFormatException if <tt>in</tt> is not a valid
* representation of a <tt>BigDecimal</tt>.
* @since 1.5
*/
public BigDecimal(char[] in, MathContext mc) {
this(in, 0, in.length, mc);
}
/**
* Translates the string representation of a <tt>BigDecimal</tt>
* into a <tt>BigDecimal</tt>. The string representation consists
* of an optional sign, <tt>'+'</tt> (<tt>'\u002B'</tt>) or
* <tt>'-'</tt> (<tt>'\u002D'</tt>), followed by a sequence of
* zero or more decimal digits ("the integer"), optionally
* followed by a fraction, optionally followed by an exponent.
*
* <p>The fraction consists of a decimal point followed by zero
* or more decimal digits. The string must contain at least one
* digit in either the integer or the fraction. The number formed
* by the sign, the integer and the fraction is referred to as the
* <i>significand</i>.
*
* <p>The exponent consists of the character <tt>'e'</tt>
* (<tt>'\u0065'</tt>) or <tt>'E'</tt> (<tt>'\u0045'</tt>)
* followed by one or more decimal digits. The value of the
* exponent must lie between -{@link Integer#MAX_VALUE} ({@link
* Integer#MIN_VALUE}+1) and {@link Integer#MAX_VALUE}, inclusive.
*
* <p>More formally, the strings this constructor accepts are
* described by the following grammar:
* <blockquote>
* <dl>
* <dt><i>BigDecimalString:</i>
* <dd><i>Sign<sub>opt</sub> Significand Exponent<sub>opt</sub></i>
* <p>
* <dt><i>Sign:</i>
* <dd><tt>+</tt>
* <dd><tt>-</tt>
* <p>
* <dt><i>Significand:</i>
* <dd><i>IntegerPart</i> <tt>.</tt> <i>FractionPart<sub>opt</sub></i>
* <dd><tt>.</tt> <i>FractionPart</i>
* <dd><i>IntegerPart</i>
* <p>
* <dt><i>IntegerPart:
* <dd>Digits</i>
* <p>
* <dt><i>FractionPart:
* <dd>Digits</i>
* <p>
* <dt><i>Exponent:
* <dd>ExponentIndicator SignedInteger</i>
* <p>
* <dt><i>ExponentIndicator:</i>
* <dd><tt>e</tt>
* <dd><tt>E</tt>
* <p>
* <dt><i>SignedInteger:
* <dd>Sign<sub>opt</sub> Digits</i>
* <p>
* <dt><i>Digits:
* <dd>Digit
* <dd>Digits Digit</i>
* <p>
* <dt><i>Digit:</i>
* <dd>any character for which {@link Character#isDigit}
* returns <tt>true</tt>, including 0, 1, 2 ...
* </dl>
* </blockquote>
*
* <p>The scale of the returned <tt>BigDecimal</tt> will be the
* number of digits in the fraction, or zero if the string
* contains no decimal point, subject to adjustment for any
* exponent; if the string contains an exponent, the exponent is
* subtracted from the scale. The value of the resulting scale
* must lie between <tt>Integer.MIN_VALUE</tt> and
* <tt>Integer.MAX_VALUE</tt>, inclusive.
*
* <p>The character-to-digit mapping is provided by {@link
* java.lang.Character#digit} set to convert to radix 10. The
* String may not contain any extraneous characters (whitespace,
* for example).
*
* <p><b>Examples:</b><br>
* The value of the returned <tt>BigDecimal</tt> is equal to
* <i>significand</i> × 10<sup> <i>exponent</i></sup>.
* For each string on the left, the resulting representation
* [<tt>BigInteger</tt>, <tt>scale</tt>] is shown on the right.
* <pre>
* "0" [0,0]
* "0.00" [0,2]
* "123" [123,0]
* "-123" [-123,0]
* "1.23E3" [123,-1]
* "1.23E+3" [123,-1]
* "12.3E+7" [123,-6]
* "12.0" [120,1]
* "12.3" [123,1]
* "0.00123" [123,5]
* "-1.23E-12" [-123,14]
* "1234.5E-4" [12345,5]
* "0E+7" [0,-7]
* "-0" [0,0]
* </pre>
*
* <p>Note: For values other than <tt>float</tt> and
* <tt>double</tt> NaN and ±Infinity, this constructor is
* compatible with the values returned by {@link Float#toString}
* and {@link Double#toString}. This is generally the preferred
* way to convert a <tt>float</tt> or <tt>double</tt> into a
* BigDecimal, as it doesn't suffer from the unpredictability of
* the {@link #BigDecimal(double)} constructor.
*
* @param val String representation of <tt>BigDecimal</tt>.
*
* @throws NumberFormatException if <tt>val</tt> is not a valid
* representation of a <tt>BigDecimal</tt>.
*/
public BigDecimal(String val) {
this(val.toCharArray(), 0, val.length());
}
/**
* Translates the string representation of a <tt>BigDecimal</tt>
* into a <tt>BigDecimal</tt>, accepting the same strings as the
* {@link #BigDecimal(String)} constructor, with rounding
* according to the context settings.
*
* @param val string representation of a <tt>BigDecimal</tt>.
* @param mc the context to use.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @throws NumberFormatException if <tt>val</tt> is not a valid
* representation of a BigDecimal.
* @since 1.5
*/
public BigDecimal(String val, MathContext mc) {
this(val.toCharArray(), 0, val.length());
if (mc.precision > 0)
roundThis(mc);
}
/**
* Translates a <tt>double</tt> into a <tt>BigDecimal</tt> which
* is the exact decimal representation of the <tt>double</tt>'s
* binary floating-point value. The scale of the returned
* <tt>BigDecimal</tt> is the smallest value such that
* <tt>(10<sup>scale</sup> × val)</tt> is an integer.
* <p>
* <b>Notes:</b>
* <ol>
* <li>
* The results of this constructor can be somewhat unpredictable.
* One might assume that writing <tt>new BigDecimal(0.1)</tt> in
* Java creates a <tt>BigDecimal</tt> which is exactly equal to
* 0.1 (an unscaled value of 1, with a scale of 1), but it is
* actually equal to
* 0.1000000000000000055511151231257827021181583404541015625.
* This is because 0.1 cannot be represented exactly as a
* <tt>double</tt> (or, for that matter, as a binary fraction of
* any finite length). Thus, the value that is being passed
* <i>in</i> to the constructor is not exactly equal to 0.1,
* appearances notwithstanding.
*
* <li>
* The <tt>String</tt> constructor, on the other hand, is
* perfectly predictable: writing <tt>new BigDecimal("0.1")</tt>
* creates a <tt>BigDecimal</tt> which is <i>exactly</i> equal to
* 0.1, as one would expect. Therefore, it is generally
* recommended that the {@linkplain #BigDecimal(String)
* <tt>String</tt> constructor} be used in preference to this one.
*
* <li>
* When a <tt>double</tt> must be used as a source for a
* <tt>BigDecimal</tt>, note that this constructor provides an
* exact conversion; it does not give the same result as
* converting the <tt>double</tt> to a <tt>String</tt> using the
* {@link Double#toString(double)} method and then using the
* {@link #BigDecimal(String)} constructor. To get that result,
* use the <tt>static</tt> {@link #valueOf(double)} method.
* </ol>
*
* @param val <tt>double</tt> value to be converted to
* <tt>BigDecimal</tt>.
* @throws NumberFormatException if <tt>val</tt> is infinite or NaN.
*/
public BigDecimal(double val) {
if (Double.isInfinite(val) || Double.isNaN(val))
throw new NumberFormatException("Infinite or NaN");
// Translate the double into sign, exponent and significand, according
// to the formulae in JLS, Section 20.10.22.
long valBits = Double.doubleToLongBits(val);
int sign = ((valBits >> 63)==0 ? 1 : -1);
int exponent = (int) ((valBits >> 52) & 0x7ffL);
long significand = (exponent==0 ? (valBits & ((1L<<52) - 1)) << 1
: (valBits & ((1L<<52) - 1)) | (1L<<52));
exponent -= 1075;
// At this point, val == sign * significand * 2**exponent.
/*
* Special case zero to supress nonterminating normalization
* and bogus scale calculation.
*/
if (significand == 0) {
intVal = BigInteger.ZERO;
intCompact = 0;
precision = 1;
return;
}
// Normalize
while((significand & 1) == 0) { // i.e., significand is even
significand >>= 1;
exponent++;
}
// Calculate intVal and scale
intVal = BigInteger.valueOf(sign*significand);
if (exponent < 0) {
intVal = intVal.multiply(BigInteger.valueOf(5).pow(-exponent));
scale = -exponent;
} else if (exponent > 0) {
intVal = intVal.multiply(BigInteger.valueOf(2).pow(exponent));
}
if (intVal.bitLength() <= MAX_BIGINT_BITS) {
intCompact = intVal.longValue();
}
}
/**
* Translates a <tt>double</tt> into a <tt>BigDecimal</tt>, with
* rounding according to the context settings. The scale of the
* <tt>BigDecimal</tt> is the smallest value such that
* <tt>(10<sup>scale</sup> × val)</tt> is an integer.
*
* <p>The results of this constructor can be somewhat unpredictable
* and its use is generally not recommended; see the notes under
* the {@link #BigDecimal(double)} constructor.
*
* @param val <tt>double</tt> value to be converted to
* <tt>BigDecimal</tt>.
* @param mc the context to use.
* @throws ArithmeticException if the result is inexact but the
* RoundingMode is UNNECESSARY.
* @throws NumberFormatException if <tt>val</tt> is infinite or NaN.
* @since 1.5
*/
public BigDecimal(double val, MathContext mc) {
this(val);
if (mc.precision > 0)
roundThis(mc);
}
/**
* Translates a <tt>BigInteger</tt> into a <tt>BigDecimal</tt>.
* The scale of the <tt>BigDecimal</tt> is zero.
*
* @param val <tt>BigInteger</tt> value to be converted to
* <tt>BigDecimal</tt>.
*/
public BigDecimal(BigInteger val) {
intVal = val;
if (val.bitLength() <= MAX_BIGINT_BITS) {
intCompact = val.longValue();
}
}
/**
* Translates a <tt>BigInteger</tt> into a <tt>BigDecimal</tt>
* rounding according to the context settings. The scale of the
* <tt>BigDecimal</tt> is zero.
*
* @param val <tt>BigInteger</tt> value to be converted to
* <tt>BigDecimal</tt>.
* @param mc the context to use.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @since 1.5
*/
public BigDecimal(BigInteger val, MathContext mc) {
intVal = val;
if (mc.precision > 0)
roundThis(mc);
}
/**
* Translates a <tt>BigInteger</tt> unscaled value and an
* <tt>int</tt> scale into a <tt>BigDecimal</tt>. The value of
* the <tt>BigDecimal</tt> is
* <tt>(unscaledVal × 10<sup>-scale</sup>)</tt>.
*
* @param unscaledVal unscaled value of the <tt>BigDecimal</tt>.
* @param scale scale of the <tt>BigDecimal</tt>.
*/
public BigDecimal(BigInteger unscaledVal, int scale) {
// Negative scales are now allowed
intVal = unscaledVal;
this.scale = scale;
if (unscaledVal.bitLength() <= MAX_BIGINT_BITS) {
intCompact = unscaledVal.longValue();
}
}
/**
* Translates a <tt>BigInteger</tt> unscaled value and an
* <tt>int</tt> scale into a <tt>BigDecimal</tt>, with rounding
* according to the context settings. The value of the
* <tt>BigDecimal</tt> is <tt>(unscaledVal ×
* 10<sup>-scale</sup>)</tt>, rounded according to the
* <tt>precision</tt> and rounding mode settings.
*
* @param unscaledVal unscaled value of the <tt>BigDecimal</tt>.
* @param scale scale of the <tt>BigDecimal</tt>.
* @param mc the context to use.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @since 1.5
*/
public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) {
intVal = unscaledVal;
this.scale = scale;
if (mc.precision > 0)
roundThis(mc);
}
/**
* Translates an <tt>int</tt> into a <tt>BigDecimal</tt>. The
* scale of the <tt>BigDecimal</tt> is zero.
*
* @param val <tt>int</tt> value to be converted to
* <tt>BigDecimal</tt>.
* @since 1.5
*/
public BigDecimal(int val) {
intCompact = val;
}
/**
* Translates an <tt>int</tt> into a <tt>BigDecimal</tt>, with
* rounding according to the context settings. The scale of the
* <tt>BigDecimal</tt>, before any rounding, is zero.
*
* @param val <tt>int</tt> value to be converted to <tt>BigDecimal</tt>.
* @param mc the context to use.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @since 1.5
*/
public BigDecimal(int val, MathContext mc) {
intCompact = val;
if (mc.precision > 0)
roundThis(mc);
}
/**
* Translates a <tt>long</tt> into a <tt>BigDecimal</tt>. The
* scale of the <tt>BigDecimal</tt> is zero.
*
* @param val <tt>long</tt> value to be converted to <tt>BigDecimal</tt>.
* @since 1.5
*/
public BigDecimal(long val) {
if (compactLong(val))
intCompact = val;
else
intVal = BigInteger.valueOf(val);
}
/**
* Translates a <tt>long</tt> into a <tt>BigDecimal</tt>, with
* rounding according to the context settings. The scale of the
* <tt>BigDecimal</tt>, before any rounding, is zero.
*
* @param val <tt>long</tt> value to be converted to <tt>BigDecimal</tt>.
* @param mc the context to use.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @since 1.5
*/
public BigDecimal(long val, MathContext mc) {
if (compactLong(val))
intCompact = val;
else
intVal = BigInteger.valueOf(val);
if (mc.precision > 0)
roundThis(mc);
}
/**
* Trusted internal constructor
*/
private BigDecimal(long val, int scale) {
this.intCompact = val;
this.scale = scale;
}
/**
* Trusted internal constructor
*/
private BigDecimal(BigInteger intVal, long val, int scale) {
this.intVal = intVal;
this.intCompact = val;
this.scale = scale;
}
// Static Factory Methods
/**
* Translates a <tt>long</tt> unscaled value and an
* <tt>int</tt> scale into a <tt>BigDecimal</tt>. This
* "static factory method" is provided in preference to
* a (<tt>long</tt>, <tt>int</tt>) constructor because it
* allows for reuse of frequently used <tt>BigDecimal</tt> values..
*
* @param unscaledVal unscaled value of the <tt>BigDecimal</tt>.
* @param scale scale of the <tt>BigDecimal</tt>.
* @return a <tt>BigDecimal</tt> whose value is
* <tt>(unscaledVal × 10<sup>-scale</sup>)</tt>.
*/
public static BigDecimal valueOf(long unscaledVal, int scale) {
if (scale == 0 && unscaledVal >= 0 && unscaledVal <= 10) {
return zeroThroughTen[(int)unscaledVal];
}
if (compactLong(unscaledVal))
return new BigDecimal(unscaledVal, scale);
return new BigDecimal(BigInteger.valueOf(unscaledVal), scale);
}
/**
* Translates a <tt>long</tt> value into a <tt>BigDecimal</tt>
* with a scale of zero. This "static factory method"
* is provided in preference to a (<tt>long</tt>) constructor
* because it allows for reuse of frequently used
* <tt>BigDecimal</tt> values.
*
* @param val value of the <tt>BigDecimal</tt>.
* @return a <tt>BigDecimal</tt> whose value is <tt>val</tt>.
*/
public static BigDecimal valueOf(long val) {
return valueOf(val, 0);
}
/**
* Translates a <tt>double</tt> into a <tt>BigDecimal</tt>, using
* the <tt>double</tt>'s canonical string representation provided
* by the {@link Double#toString(double)} method.
*
* <p><b>Note:</b> This is generally the preferred way to convert
* a <tt>double</tt> (or <tt>float</tt>) into a
* <tt>BigDecimal</tt>, as the value returned is equal to that
* resulting from constructing a <tt>BigDecimal</tt> from the
* result of using {@link Double#toString(double)}.
*
* @param val <tt>double</tt> to convert to a <tt>BigDecimal</tt>.
* @return a <tt>BigDecimal</tt> whose value is equal to or approximately
* equal to the value of <tt>val</tt>.
* @throws NumberFormatException if <tt>val</tt> is infinite or NaN.
* @since 1.5
*/
public static BigDecimal valueOf(double val) {
// Reminder: a zero double returns '0.0', so we cannot fastpath
// to use the constant ZERO. This might be important enough to
// justify a factory approach, a cache, or a few private
// constants, later.
return new BigDecimal(Double.toString(val));
}
// Arithmetic Operations
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this +
* augend)</tt>, and whose scale is <tt>max(this.scale(),
* augend.scale())</tt>.
*
* @param augend value to be added to this <tt>BigDecimal</tt>.
* @return <tt>this + augend</tt>
*/
public BigDecimal add(BigDecimal augend) {
BigDecimal arg[] = {this, augend};
matchScale(arg);
long x = arg[0].intCompact;
long y = arg[1].intCompact;
// Might be able to do a more clever check incorporating the
// inflated check into the overflow computation.
if (x != INFLATED && y != INFLATED) {
long sum = x + y;
/*
* If the sum is not an overflowed value, continue to use
* the compact representation. if either of x or y is
* INFLATED, the sum should also be regarded as an
* overflow. See "Hacker's Delight" section 2-12 for
* explanation of the overflow test.
*/
if ( (((sum ^ x) & (sum ^ y)) >> 63) == 0L ) // not overflowed
return BigDecimal.valueOf(sum, arg[0].scale);
}
return new BigDecimal(arg[0].inflate().intVal.add(arg[1].inflate().intVal), arg[0].scale);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this + augend)</tt>,
* with rounding according to the context settings.
*
* If either number is zero and the precision setting is nonzero then
* the other number, rounded if necessary, is used as the result.
*
* @param augend value to be added to this <tt>BigDecimal</tt>.
* @param mc the context to use.
* @return <tt>this + augend</tt>, rounded as necessary.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @since 1.5
*/
public BigDecimal add(BigDecimal augend, MathContext mc) {
if (mc.precision == 0)
return add(augend);
BigDecimal lhs = this;
// Could optimize if values are compact
this.inflate();
augend.inflate();
// If either number is zero then the other number, rounded and
// scaled if necessary, is used as the result.
{
boolean lhsIsZero = lhs.signum() == 0;
boolean augendIsZero = augend.signum() == 0;
if (lhsIsZero || augendIsZero) {
int preferredScale = Math.max(lhs.scale(), augend.scale());
BigDecimal result;
// Could use a factory for zero instead of a new object
if (lhsIsZero && augendIsZero)
return new BigDecimal(BigInteger.ZERO, 0, preferredScale);
result = lhsIsZero ? augend.doRound(mc) : lhs.doRound(mc);
if (result.scale() == preferredScale)
return result;
else if (result.scale() > preferredScale)
return new BigDecimal(result.intVal, result.intCompact, result.scale).
stripZerosToMatchScale(preferredScale);
else { // result.scale < preferredScale
int precisionDiff = mc.precision - result.precision();
int scaleDiff = preferredScale - result.scale();
if (precisionDiff >= scaleDiff)
return result.setScale(preferredScale); // can achieve target scale
else
return result.setScale(result.scale() + precisionDiff);
}
}
}
long padding = (long)lhs.scale - augend.scale;
if (padding != 0) { // scales differ; alignment needed
BigDecimal arg[] = preAlign(lhs, augend, padding, mc);
matchScale(arg);
lhs = arg[0];
augend = arg[1];
}
return new BigDecimal(lhs.inflate().intVal.add(augend.inflate().intVal),
lhs.scale).doRound(mc);
}
/**
* Returns an array of length two, the sum of whose entries is
* equal to the rounded sum of the {@code BigDecimal} arguments.
*
* <p>If the digit positions of the arguments have a sufficient
* gap between them, the value smaller in magnitude can be
* condensed into a "sticky bit" and the end result will
* round the same way <em>if</em> the precision of the final
* result does not include the high order digit of the small
* magnitude operand.
*
* <p>Note that while strictly speaking this is an optimization,
* it makes a much wider range of additions practical.
*
* <p>This corresponds to a pre-shift operation in a fixed
* precision floating-point adder; this method is complicated by
* variable precision of the result as determined by the
* MathContext. A more nuanced operation could implement a
* "right shift" on the smaller magnitude operand so
* that the number of digits of the smaller operand could be
* reduced even though the significands partially overlapped.
*/
private BigDecimal[] preAlign(BigDecimal lhs, BigDecimal augend,
long padding, MathContext mc) {
assert padding != 0;
BigDecimal big;
BigDecimal small;
if (padding < 0) { // lhs is big; augend is small
big = lhs;
small = augend;
} else { // lhs is small; augend is big
big = augend;
small = lhs;
}
/*
* This is the estimated scale of an ulp of the result; it
* assumes that the result doesn't have a carry-out on a true
* add (e.g. 999 + 1 => 1000) or any subtractive cancellation
* on borrowing (e.g. 100 - 1.2 => 98.8)
*/
long estResultUlpScale = (long)big.scale - big.precision() + mc.precision;
/*
* The low-order digit position of big is big.scale(). This
* is true regardless of whether big has a positive or
* negative scale. The high-order digit position of small is
* small.scale - (small.precision() - 1). To do the full
* condensation, the digit positions of big and small must be
* disjoint *and* the digit positions of small should not be
* directly visible in the result.
*/
long smallHighDigitPos = (long)small.scale - small.precision() + 1;
if (smallHighDigitPos > big.scale + 2 && // big and small disjoint
smallHighDigitPos > estResultUlpScale + 2) { // small digits not visible
small = BigDecimal.valueOf(small.signum(),
this.checkScale(Math.max(big.scale, estResultUlpScale) + 3));
}
// Since addition is symmetric, preserving input order in
// returned operands doesn't matter
BigDecimal[] result = {big, small};
return result;
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this -
* subtrahend)</tt>, and whose scale is <tt>max(this.scale(),
* subtrahend.scale())</tt>.
*
* @param subtrahend value to be subtracted from this <tt>BigDecimal</tt>.
* @return <tt>this - subtrahend</tt>
*/
public BigDecimal subtract(BigDecimal subtrahend) {
BigDecimal arg[] = {this, subtrahend};
matchScale(arg);
long x = arg[0].intCompact;
long y = arg[1].intCompact;
// Might be able to do a more clever check incorporating the
// inflated check into the overflow computation.
if (x != INFLATED && y != INFLATED) {
long difference = x - y;
/*
* If the difference is not an overflowed value, continue
* to use the compact representation. if either of x or y
* is INFLATED, the difference should also be regarded as
* an overflow. See "Hacker's Delight" section 2-12 for
* explanation of the overflow test.
*/
if ( ((x ^ y) & (difference ^ x) ) >> 63 == 0L ) // not overflowed
return BigDecimal.valueOf(difference, arg[0].scale);
}
return new BigDecimal(arg[0].inflate().intVal.subtract(arg[1].inflate().intVal),
arg[0].scale);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this - subtrahend)</tt>,
* with rounding according to the context settings.
*
* If <tt>subtrahend</tt> is zero then this, rounded if necessary, is used as the
* result. If this is zero then the result is <tt>subtrahend.negate(mc)</tt>.
*
* @param subtrahend value to be subtracted from this <tt>BigDecimal</tt>.
* @param mc the context to use.
* @return <tt>this - subtrahend</tt>, rounded as necessary.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @since 1.5
*/
public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) {
if (mc.precision == 0)
return subtract(subtrahend);
// share the special rounding code in add()
this.inflate();
subtrahend.inflate();
BigDecimal rhs = new BigDecimal(subtrahend.intVal.negate(), subtrahend.scale);
rhs.precision = subtrahend.precision;
return add(rhs, mc);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this ×
* multiplicand)</tt>, and whose scale is <tt>(this.scale() +
* multiplicand.scale())</tt>.
*
* @param multiplicand value to be multiplied by this <tt>BigDecimal</tt>.
* @return <tt>this * multiplicand</tt>
*/
public BigDecimal multiply(BigDecimal multiplicand) {
long x = this.intCompact;
long y = multiplicand.intCompact;
int productScale = checkScale((long)scale+multiplicand.scale);
// Might be able to do a more clever check incorporating the
// inflated check into the overflow computation.
if (x != INFLATED && y != INFLATED) {
/*
* If the product is not an overflowed value, continue
* to use the compact representation. if either of x or y
* is INFLATED, the product should also be regarded as
* an overflow. See "Hacker's Delight" section 2-12 for
* explanation of the overflow test.
*/
long product = x * y;
if ( !(y != 0L && product/y != x) ) // not overflowed
return BigDecimal.valueOf(product, productScale);
}
BigDecimal result = new BigDecimal(this.inflate().intVal.multiply(multiplicand.inflate().intVal), productScale);
return result;
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this ×
* multiplicand)</tt>, with rounding according to the context settings.
*
* @param multiplicand value to be multiplied by this <tt>BigDecimal</tt>.
* @param mc the context to use.
* @return <tt>this * multiplicand</tt>, rounded as necessary.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @since 1.5
*/
public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) {
if (mc.precision == 0)
return multiply(multiplicand);
BigDecimal lhs = this;
return lhs.inflate().multiply(multiplicand.inflate()).doRound(mc);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
* divisor)</tt>, and whose scale is as specified. If rounding must
* be performed to generate a result with the specified scale, the
* specified rounding mode is applied.
*
* <p>The new {@link #divide(BigDecimal, int, RoundingMode)} method
* should be used in preference to this legacy method.
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
* @param scale scale of the <tt>BigDecimal</tt> quotient to be returned.
* @param roundingMode rounding mode to apply.
* @return <tt>this / divisor</tt>
* @throws ArithmeticException if <tt>divisor</tt> is zero,
* <tt>roundingMode==ROUND_UNNECESSARY</tt> and
* the specified scale is insufficient to represent the result
* of the division exactly.
* @throws IllegalArgumentException if <tt>roundingMode</tt> does not
* represent a valid rounding mode.
* @see #ROUND_UP
* @see #ROUND_DOWN
* @see #ROUND_CEILING
* @see #ROUND_FLOOR
* @see #ROUND_HALF_UP
* @see #ROUND_HALF_DOWN
* @see #ROUND_HALF_EVEN
* @see #ROUND_UNNECESSARY
*/
public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) {
/*
* IMPLEMENTATION NOTE: This method *must* return a new object
* since dropDigits uses divide to generate a value whose
* scale is then modified.
*/
if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
throw new IllegalArgumentException("Invalid rounding mode");
/*
* Rescale dividend or divisor (whichever can be "upscaled" to
* produce correctly scaled quotient).
* Take care to detect out-of-range scales
*/
BigDecimal dividend;
if (checkScale((long)scale + divisor.scale) >= this.scale) {
dividend = this.setScale(scale + divisor.scale);
} else {
dividend = this;
divisor = divisor.setScale(checkScale((long)this.scale - scale));
}
boolean compact = dividend.intCompact != INFLATED && divisor.intCompact != INFLATED;
long div = INFLATED;
long rem = INFLATED;;
BigInteger q=null, r=null;
if (compact) {
div = dividend.intCompact / divisor.intCompact;
rem = dividend.intCompact % divisor.intCompact;
} else {
// Do the division and return result if it's exact.
BigInteger i[] = dividend.inflate().intVal.divideAndRemainder(divisor.inflate().intVal);
q = i[0];
r = i[1];
}
// Check for exact result
if (compact) {
if (rem == 0)
return new BigDecimal(div, scale);
} else {
if (r.signum() == 0)
return new BigDecimal(q, scale);
}
if (roundingMode == ROUND_UNNECESSARY) // Rounding prohibited
throw new ArithmeticException("Rounding necessary");
/* Round as appropriate */
int signum = dividend.signum() * divisor.signum(); // Sign of result
boolean increment;
if (roundingMode == ROUND_UP) { // Away from zero
increment = true;
} else if (roundingMode == ROUND_DOWN) { // Towards zero
increment = false;
} else if (roundingMode == ROUND_CEILING) { // Towards +infinity
increment = (signum > 0);
} else if (roundingMode == ROUND_FLOOR) { // Towards -infinity
increment = (signum < 0);
} else { // Remaining modes based on nearest-neighbor determination
int cmpFracHalf;
if (compact) {
cmpFracHalf = longCompareTo(Math.abs(2*rem), Math.abs(divisor.intCompact));
} else {
// add(r) here is faster than multiply(2) or shiftLeft(1)
cmpFracHalf= r.add(r).abs().compareTo(divisor.intVal.abs());
}
if (cmpFracHalf < 0) { // We're closer to higher digit
increment = false;
} else if (cmpFracHalf > 0) { // We're closer to lower digit
increment = true;
} else { // We're dead-center
if (roundingMode == ROUND_HALF_UP)
increment = true;
else if (roundingMode == ROUND_HALF_DOWN)
increment = false;
else { // roundingMode == ROUND_HALF_EVEN
if (compact)
increment = (div & 1L) != 0L;
else
increment = q.testBit(0); // true iff q is odd
}
}
}
if (compact) {
if (increment)
div += signum; // guaranteed not to overflow
return new BigDecimal(div, scale);
} else {
return (increment
? new BigDecimal(q.add(BigInteger.valueOf(signum)), scale)
: new BigDecimal(q, scale));
}
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
* divisor)</tt>, and whose scale is as specified. If rounding must
* be performed to generate a result with the specified scale, the
* specified rounding mode is applied.
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
* @param scale scale of the <tt>BigDecimal</tt> quotient to be returned.
* @param roundingMode rounding mode to apply.
* @return <tt>this / divisor</tt>
* @throws ArithmeticException if <tt>divisor</tt> is zero,
* <tt>roundingMode==RoundingMode.UNNECESSARY</tt> and
* the specified scale is insufficient to represent the result
* of the division exactly.
* @since 1.5
*/
public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
return divide(divisor, scale, roundingMode.oldMode);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
* divisor)</tt>, and whose scale is <tt>this.scale()</tt>. If
* rounding must be performed to generate a result with the given
* scale, the specified rounding mode is applied.
*
* <p>The new {@link #divide(BigDecimal, RoundingMode)} method
* should be used in preference to this legacy method.
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
* @param roundingMode rounding mode to apply.
* @return <tt>this / divisor</tt>
* @throws ArithmeticException if <tt>divisor==0</tt>, or
* <tt>roundingMode==ROUND_UNNECESSARY</tt> and
* <tt>this.scale()</tt> is insufficient to represent the result
* of the division exactly.
* @throws IllegalArgumentException if <tt>roundingMode</tt> does not
* represent a valid rounding mode.
* @see #ROUND_UP
* @see #ROUND_DOWN
* @see #ROUND_CEILING
* @see #ROUND_FLOOR
* @see #ROUND_HALF_UP
* @see #ROUND_HALF_DOWN
* @see #ROUND_HALF_EVEN
* @see #ROUND_UNNECESSARY
*/
public BigDecimal divide(BigDecimal divisor, int roundingMode) {
return this.divide(divisor, scale, roundingMode);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
* divisor)</tt>, and whose scale is <tt>this.scale()</tt>. If
* rounding must be performed to generate a result with the given
* scale, the specified rounding mode is applied.
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
* @param roundingMode rounding mode to apply.
* @return <tt>this / divisor</tt>
* @throws ArithmeticException if <tt>divisor==0</tt>, or
* <tt>roundingMode==RoundingMode.UNNECESSARY</tt> and
* <tt>this.scale()</tt> is insufficient to represent the result
* of the division exactly.
* @since 1.5
*/
public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode) {
return this.divide(divisor, scale, roundingMode.oldMode);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
* divisor)</tt>, and whose preferred scale is <tt>(this.scale() -
* divisor.scale())</tt>; if the exact quotient cannot be
* represented (because it has a non-terminating decimal
* expansion) an <tt>ArithmeticException</tt> is thrown.
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
* @throws ArithmeticException if the exact quotient does not have a
* terminating decimal expansion
* @return <tt>this / divisor</tt>
* @since 1.5
* @author Joseph D. Darcy
*/
public BigDecimal divide(BigDecimal divisor) {
/*
* Handle zero cases first.
*/
if (divisor.signum() == 0) { // x/0
if (this.signum() == 0) // 0/0
throw new ArithmeticException("Division undefined"); // NaN
throw new ArithmeticException("Division by zero");
}
// Calculate preferred scale
int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(),
Integer.MAX_VALUE), Integer.MIN_VALUE);
if (this.signum() == 0) // 0/y
return new BigDecimal(0, preferredScale);
else {
this.inflate();
divisor.inflate();
/*
* If the quotient this/divisor has a terminating decimal
* expansion, the expansion can have no more than
* (a.precision() + ceil(10*b.precision)/3) digits.
* Therefore, create a MathContext object with this
* precision and do a divide with the UNNECESSARY rounding
* mode.
*/
MathContext mc = new MathContext( (int)Math.min(this.precision() +
(long)Math.ceil(10.0*divisor.precision()/3.0),
Integer.MAX_VALUE),
RoundingMode.UNNECESSARY);
BigDecimal quotient;
try {
quotient = this.divide(divisor, mc);
} catch (ArithmeticException e) {
throw new ArithmeticException("Non-terminating decimal expansion; " +
"no exact representable decimal result.");
}
int quotientScale = quotient.scale();
// divide(BigDecimal, mc) tries to adjust the quotient to
// the desired one by removing trailing zeros; since the
// exact divide method does not have an explicit digit
// limit, we can add zeros too.
if (preferredScale > quotientScale)
return quotient.setScale(preferredScale);
return quotient;
}
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
* divisor)</tt>, with rounding according to the context settings.
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
* @param mc the context to use.
* @return <tt>this / divisor</tt>, rounded as necessary.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt> or
* <tt>mc.precision == 0</tt> and the quotient has a
* non-terminating decimal expansion.
* @since 1.5
*/
public BigDecimal divide(BigDecimal divisor, MathContext mc) {
if (mc.precision == 0)
return divide(divisor);
BigDecimal lhs = this.inflate(); // left-hand-side
BigDecimal rhs = divisor.inflate(); // right-hand-side
BigDecimal result; // work
long preferredScale = (long)lhs.scale() - rhs.scale();
// Now calculate the answer. We use the existing
// divide-and-round method, but as this rounds to scale we have
// to normalize the values here to achieve the desired result.
// For x/y we first handle y=0 and x=0, and then normalize x and
// y to give x' and y' with the following constraints:
// (a) 0.1 <= x' < 1
// (b) x' <= y' < 10*x'
// Dividing x'/y' with the required scale set to mc.precision then
// will give a result in the range 0.1 to 1 rounded to exactly
// the right number of digits (except in the case of a result of
// 1.000... which can arise when x=y, or when rounding overflows
// The 1.000... case will reduce properly to 1.
if (rhs.signum() == 0) { // x/0
if (lhs.signum() == 0) // 0/0
throw new ArithmeticException("Division undefined"); // NaN
throw new ArithmeticException("Division by zero");
}
if (lhs.signum() == 0) // 0/y
return new BigDecimal(BigInteger.ZERO,
(int)Math.max(Math.min(preferredScale,
Integer.MAX_VALUE),
Integer.MIN_VALUE));
BigDecimal xprime = new BigDecimal(lhs.intVal.abs(), lhs.precision());
BigDecimal yprime = new BigDecimal(rhs.intVal.abs(), rhs.precision());
// xprime and yprime are now both in range 0.1 through 0.999...
if (mc.roundingMode == RoundingMode.CEILING ||
mc.roundingMode == RoundingMode.FLOOR) {
// The floor (round toward negative infinity) and ceil
// (round toward positive infinity) rounding modes are not
// invariant under a sign flip. If xprime/yprime has a
// different sign than lhs/rhs, the rounding mode must be
// changed.
if ((xprime.signum() != lhs.signum()) ^
(yprime.signum() != rhs.signum())) {
mc = new MathContext(mc.precision,
(mc.roundingMode==RoundingMode.CEILING)?
RoundingMode.FLOOR:RoundingMode.CEILING);
}
}
if (xprime.compareTo(yprime) > 0) // satisfy constraint (b)
yprime.scale -= 1; // [that is, yprime *= 10]
result = xprime.divide(yprime, mc.precision, mc.roundingMode.oldMode);
// correct the scale of the result...
result.scale = checkScale((long)yprime.scale - xprime.scale
- (rhs.scale - lhs.scale) + mc.precision);
// apply the sign
if (lhs.signum() != rhs.signum())
result = result.negate();
// doRound, here, only affects 1000000000 case.
result = result.doRound(mc);
if (result.multiply(divisor).compareTo(this) == 0) {
// Apply preferred scale rules for exact quotients
return result.stripZerosToMatchScale(preferredScale);
}
else {
return result;
}
}
/**
* Returns a <tt>BigDecimal</tt> whose value is the integer part
* of the quotient <tt>(this / divisor)</tt> rounded down. The
* preferred scale of the result is <code>(this.scale() -
* divisor.scale())</code>.
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
* @return The integer part of <tt>this / divisor</tt>.
* @throws ArithmeticException if <tt>divisor==0</tt>
* @since 1.5
*/
public BigDecimal divideToIntegralValue(BigDecimal divisor) {
// Calculate preferred scale
int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(),
Integer.MAX_VALUE), Integer.MIN_VALUE);
this.inflate();
divisor.inflate();
if (this.abs().compareTo(divisor.abs()) < 0) {
// much faster when this << divisor
return BigDecimal.valueOf(0, preferredScale);
}
if(this.signum() == 0 && divisor.signum() != 0)
return this.setScale(preferredScale);
// Perform a divide with enough digits to round to a correct
// integer value; then remove any fractional digits
int maxDigits = (int)Math.min(this.precision() +
(long)Math.ceil(10.0*divisor.precision()/3.0) +
Math.abs((long)this.scale() - divisor.scale()) + 2,
Integer.MAX_VALUE);
BigDecimal quotient = this.divide(divisor, new MathContext(maxDigits,
RoundingMode.DOWN));
if (quotient.scale > 0) {
quotient = quotient.setScale(0, RoundingMode.DOWN).
stripZerosToMatchScale(preferredScale);
}
if (quotient.scale < preferredScale) {
// pad with zeros if necessary
quotient = quotient.setScale(preferredScale);
}
return quotient;
}
/**
* Returns a <tt>BigDecimal</tt> whose value is the integer part
* of <tt>(this / divisor)</tt>. Since the integer part of the
* exact quotient does not depend on the rounding mode, the
* rounding mode does not affect the values returned by this
* method. The preferred scale of the result is
* <code>(this.scale() - divisor.scale())</code>. An
* <tt>ArithmeticException</tt> is thrown if the integer part of
* the exact quotient needs more than <tt>mc.precision</tt>
* digits.
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
* @param mc the context to use.
* @return The integer part of <tt>this / divisor</tt>.
* @throws ArithmeticException if <tt>divisor==0</tt>
* @throws ArithmeticException if <tt>mc.precision</tt> > 0 and the result
* requires a precision of more than <tt>mc.precision</tt> digits.
* @since 1.5
* @author Joseph D. Darcy
*/
public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) {
if (mc.precision == 0 || // exact result
(this.abs().compareTo(divisor.abs()) < 0) ) // zero result
return divideToIntegralValue(divisor);
// Calculate preferred scale
int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(),
Integer.MAX_VALUE), Integer.MIN_VALUE);
/*
* Perform a normal divide to mc.precision digits. If the
* remainder has absolute value less than the divisor, the
* integer portion of the quotient fits into mc.precision
* digits. Next, remove any fractional digits from the
* quotient and adjust the scale to the preferred value.
*/
BigDecimal result = this.divide(divisor, new MathContext(mc.precision,
RoundingMode.DOWN));
int resultScale = result.scale();
if (result.scale() < 0) {
/*
* Result is an integer. See if quotient represents the
* full integer portion of the exact quotient; if it does,
* the computed remainder will be less than the divisor.
*/
BigDecimal product = result.multiply(divisor);
// If the quotient is the full integer value,
// |dividend-product| < |divisor|.
if (this.subtract(product).abs().compareTo(divisor.abs()) >= 0) {
throw new ArithmeticException("Division impossible");
}
} else if (result.scale() > 0) {
/*
* Integer portion of quotient will fit into precision
* digits; recompute quotient to scale 0 to avoid double
* rounding and then try to adjust, if necessary.
*/
result = result.setScale(0, RoundingMode.DOWN);
}
// else result.scale() == 0;
int precisionDiff;
if ((preferredScale > result.scale()) &&
(precisionDiff = mc.precision - result.precision()) > 0 ) {
return result.setScale(result.scale() +
Math.min(precisionDiff, preferredScale - result.scale) );
} else
return result.stripZerosToMatchScale(preferredScale);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this % divisor)</tt>.
*
* <p>The remainder is given by
* <tt>this.subtract(this.divideToIntegralValue(divisor).multiply(divisor))</tt>.
* Note that this is not the modulo operation (the result can be
* negative).
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
* @return <tt>this % divisor</tt>.
* @throws ArithmeticException if <tt>divisor==0</tt>
* @since 1.5
*/
public BigDecimal remainder(BigDecimal divisor) {
BigDecimal divrem[] = this.divideAndRemainder(divisor);
return divrem[1];
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(this %
* divisor)</tt>, with rounding according to the context settings.
* The <tt>MathContext</tt> settings affect the implicit divide
* used to compute the remainder. The remainder computation
* itself is by definition exact. Therefore, the remainder may
* contain more than <tt>mc.getPrecision()</tt> digits.
*
* <p>The remainder is given by
* <tt>this.subtract(this.divideToIntegralValue(divisor,
* mc).multiply(divisor))</tt>. Note that this is not the modulo
* operation (the result can be negative).
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
* @param mc the context to use.
* @return <tt>this % divisor</tt>, rounded as necessary.
* @throws ArithmeticException if <tt>divisor==0</tt>
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>, or <tt>mc.precision</tt>
* > 0 and the result of <tt>this.divideToIntgralValue(divisor)</tt> would
* require a precision of more than <tt>mc.precision</tt> digits.
* @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
* @since 1.5
*/
public BigDecimal remainder(BigDecimal divisor, MathContext mc) {
BigDecimal divrem[] = this.divideAndRemainder(divisor, mc);
return divrem[1];
}
/**
* Returns a two-element <tt>BigDecimal</tt> array containing the
* result of <tt>divideToIntegralValue</tt> followed by the result of
* <tt>remainder</tt> on the two operands.
*
* <p>Note that if both the integer quotient and remainder are
* needed, this method is faster than using the
* <tt>divideToIntegralValue</tt> and <tt>remainder</tt> methods
* separately because the division need only be carried out once.
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided,
* and the remainder computed.
* @return a two element <tt>BigDecimal</tt> array: the quotient
* (the result of <tt>divideToIntegralValue</tt>) is the initial element
* and the remainder is the final element.
* @throws ArithmeticException if <tt>divisor==0</tt>
* @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
* @see #remainder(java.math.BigDecimal, java.math.MathContext)
* @since 1.5
*/
public BigDecimal[] divideAndRemainder(BigDecimal divisor) {
// we use the identity x = i * y + r to determine r
BigDecimal[] result = new BigDecimal[2];
result[0] = this.divideToIntegralValue(divisor);
result[1] = this.subtract(result[0].multiply(divisor));
return result;
}
/**
* Returns a two-element <tt>BigDecimal</tt> array containing the
* result of <tt>divideToIntegralValue</tt> followed by the result of
* <tt>remainder</tt> on the two operands calculated with rounding
* according to the context settings.
*
* <p>Note that if both the integer quotient and remainder are
* needed, this method is faster than using the
* <tt>divideToIntegralValue</tt> and <tt>remainder</tt> methods
* separately because the division need only be carried out once.
*
* @param divisor value by which this <tt>BigDecimal</tt> is to be divided,
* and the remainder computed.
* @param mc the context to use.
* @return a two element <tt>BigDecimal</tt> array: the quotient
* (the result of <tt>divideToIntegralValue</tt>) is the
* initial element and the remainder is the final element.
* @throws ArithmeticException if <tt>divisor==0</tt>
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>, or <tt>mc.precision</tt>
* > 0 and the result of <tt>this.divideToIntgralValue(divisor)</tt> would
* require a precision of more than <tt>mc.precision</tt> digits.
* @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
* @see #remainder(java.math.BigDecimal, java.math.MathContext)
* @since 1.5
*/
public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc) {
if (mc.precision == 0)
return divideAndRemainder(divisor);
BigDecimal[] result = new BigDecimal[2];
BigDecimal lhs = this;
result[0] = lhs.divideToIntegralValue(divisor, mc);
result[1] = lhs.subtract(result[0].multiply(divisor));
return result;
}
/**
* Returns a <tt>BigDecimal</tt> whose value is
* <tt>(this<sup>n</sup>)</tt>, The power is computed exactly, to
* unlimited precision.
*
* <p>The parameter <tt>n</tt> must be in the range 0 through
* 999999999, inclusive. <tt>ZERO.pow(0)</tt> returns {@link
* #ONE}.
*
* Note that future releases may expand the allowable exponent
* range of this method.
*
* @param n power to raise this <tt>BigDecimal</tt> to.
* @return <tt>this<sup>n</sup></tt>
* @throws ArithmeticException if <tt>n</tt> is out of range.
* @since 1.5
*/
public BigDecimal pow(int n) {
if (n < 0 || n > 999999999)
throw new ArithmeticException("Invalid operation");
// No need to calculate pow(n) if result will over/underflow.
// Don't attempt to support "supernormal" numbers.
int newScale = checkScale((long)scale * n);
this.inflate();
return new BigDecimal(intVal.pow(n), newScale);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is
* <tt>(this<sup>n</sup>)</tt>. The current implementation uses
* the core algorithm defined in ANSI standard X3.274-1996 with
* rounding according to the context settings. In general, the
* returned numerical value is within two ulps of the exact
* numerical value for the chosen precision. Note that future
* releases may use a different algorithm with a decreased
* allowable error bound and increased allowable exponent range.
*
* <p>The X3.274-1996 algorithm is:
*
* <ul>
* <li> An <tt>ArithmeticException</tt> exception is thrown if
* <ul>
* <li><tt>abs(n) > 999999999</tt>
* <li><tt>mc.precision == 0</tt> and <tt>n < 0</tt>
* <li><tt>mc.precision > 0</tt> and <tt>n</tt> has more than
* <tt>mc.precision</tt> decimal digits
* </ul>
*
* <li> if <tt>n</tt> is zero, {@link #ONE} is returned even if
* <tt>this</tt> is zero, otherwise
* <ul>
* <li> if <tt>n</tt> is positive, the result is calculated via
* the repeated squaring technique into a single accumulator.
* The individual multiplications with the accumulator use the
* same math context settings as in <tt>mc</tt> except for a
* precision increased to <tt>mc.precision + elength + 1</tt>
* where <tt>elength</tt> is the number of decimal digits in
* <tt>n</tt>.
*
* <li> if <tt>n</tt> is negative, the result is calculated as if
* <tt>n</tt> were positive; this value is then divided into one
* using the working precision specified above.
*
* <li> The final value from either the positive or negative case
* is then rounded to the destination precision.
* </ul>
* </ul>
*
* @param n power to raise this <tt>BigDecimal</tt> to.
* @param mc the context to use.
* @return <tt>this<sup>n</sup></tt> using the ANSI standard X3.274-1996
* algorithm
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>, or <tt>n</tt> is out
* of range.
* @since 1.5
*/
public BigDecimal pow(int n, MathContext mc) {
if (mc.precision == 0)
return pow(n);
if (n < -999999999 || n > 999999999)
throw new ArithmeticException("Invalid operation");
if (n == 0)
return ONE; // x**0 == 1 in X3.274
this.inflate();
BigDecimal lhs = this;
MathContext workmc = mc; // working settings
int mag = Math.abs(n); // magnitude of n
if (mc.precision > 0) {
int elength = intLength(mag); // length of n in digits
if (elength > mc.precision) // X3.274 rule
throw new ArithmeticException("Invalid operation");
workmc = new MathContext(mc.precision + elength + 1,
mc.roundingMode);
}
// ready to carry out power calculation...
BigDecimal acc = ONE; // accumulator
boolean seenbit = false; // set once we've seen a 1-bit
for (int i=1;;i++) { // for each bit [top bit ignored]
mag += mag; // shift left 1 bit
if (mag < 0) { // top bit is set
seenbit = true; // OK, we're off
acc = acc.multiply(lhs, workmc); // acc=acc*x
}
if (i == 31)
break; // that was the last bit
if (seenbit)
acc=acc.multiply(acc, workmc); // acc=acc*acc [square]
// else (!seenbit) no point in squaring ONE
}
// if negative n, calculate the reciprocal using working precision
if (n<0) // [hence mc.precision>0]
acc=ONE.divide(acc, workmc);
// round to final precision and strip zeros
return acc.doRound(mc);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is the absolute value
* of this <tt>BigDecimal</tt>, and whose scale is
* <tt>this.scale()</tt>.
*
* @return <tt>abs(this)</tt>
*/
public BigDecimal abs() {
return (signum() < 0 ? negate() : this);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is the absolute value
* of this <tt>BigDecimal</tt>, with rounding according to the
* context settings.
*
* @param mc the context to use.
* @return <tt>abs(this)</tt>, rounded as necessary.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @since 1.5
*/
public BigDecimal abs(MathContext mc) {
return (signum() < 0 ? negate(mc) : plus(mc));
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(-this)</tt>,
* and whose scale is <tt>this.scale()</tt>.
*
* @return <tt>-this</tt>.
*/
public BigDecimal negate() {
BigDecimal result;
if (intCompact != INFLATED)
result = BigDecimal.valueOf(-intCompact, scale);
else {
result = new BigDecimal(intVal.negate(), scale);
result.precision = precision;
}
return result;
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(-this)</tt>,
* with rounding according to the context settings.
*
* @param mc the context to use.
* @return <tt>-this</tt>, rounded as necessary.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @since 1.5
*/
public BigDecimal negate(MathContext mc) {
return negate().plus(mc);
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(+this)</tt>, and whose
* scale is <tt>this.scale()</tt>.
*
* <p>This method, which simply returns this <tt>BigDecimal</tt>
* is included for symmetry with the unary minus method {@link
* #negate()}.
*
* @return <tt>this</tt>.
* @see #negate()
* @since 1.5
*/
public BigDecimal plus() {
return this;
}
/**
* Returns a <tt>BigDecimal</tt> whose value is <tt>(+this)</tt>,
* with rounding according to the context settings.
*
* <p>The effect of this method is identical to that of the {@link
* #round(MathContext)} method.
*
* @param mc the context to use.
* @return <tt>this</tt>, rounded as necessary. A zero result will
* have a scale of 0.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
* @see #round(MathContext)
* @since 1.5
*/
public BigDecimal plus(MathContext mc) {
if (mc.precision == 0) // no rounding please
return this;
return this.doRound(mc);
}
/**
* Returns the signum function of this <tt>BigDecimal</tt>.
*
* @return -1, 0, or 1 as the value of this <tt>BigDecimal</tt>
* is negative, zero, or positive.
*/
public int signum() {
return (intCompact != INFLATED)?
Long.signum(intCompact):
intVal.signum();
}
/**
* Returns the <i>scale</i> of this <tt>BigDecimal</tt>. If zero
* or positive, the scale is the number of digits to the right of
* the decimal point. If negative, the unscaled value of the
* number is multiplied by ten to the power of the negation of the
* scale. For example, a scale of <tt>-3</tt> means the unscaled
* value is multiplied by 1000.
*
* @return the scale of this <tt>BigDecimal</tt>.
*/
public int scale() {
return scale;
}
/**
* Returns the <i>precision</i> of this <tt>BigDecimal</tt>. (The
* precision is the number of digits in the unscaled value.)
*
* <p>The precision of a zero value is 1.
*
* @return the precision of this <tt>BigDecimal</tt>.
* @since 1.5
*/
public int precision() {
int result = precision;
if (result == 0) {
result = digitLength();
precision = result;
}
return result;
}
/**
* Returns a <tt>BigInteger</tt> whose value is the <i>unscaled
* value</i> of this <tt>BigDecimal</tt>. (Computes <tt>(this *
* 10<sup>this.scale()</sup>)</tt>.)
*
* @return the unscaled value of this <tt>BigDecimal</tt>.
* @since 1.2
*/
public BigInteger unscaledValue() {
return this.inflate().intVal;
}
// Rounding Modes
/**
* Rounding mode to round away from zero. Always increments the
* digit prior to a nonzero discarded fraction. Note that this rounding
* mode never decreases the magnitude of the calculated value.
*/
public final static int ROUND_UP = 0;
/**
* Rounding mode to round towards zero. Never increments the digit
* prior to a discarded fraction (i.e., truncates). Note that this
* rounding mode never increases the magnitude of the calculated value.
*/
public final static int ROUND_DOWN = 1;
/**
* Rounding mode to round towards positive infinity. If the
* <tt>BigDecimal</tt> is positive, behaves as for
* <tt>ROUND_UP</tt>; if negative, behaves as for
* <tt>ROUND_DOWN</tt>. Note that this rounding mode never
* decreases the calculated value.
*/
public final static int ROUND_CEILING = 2;
/**
* Rounding mode to round towards negative infinity. If the
* <tt>BigDecimal</tt> is positive, behave as for
* <tt>ROUND_DOWN</tt>; if negative, behave as for
* <tt>ROUND_UP</tt>. Note that this rounding mode never
* increases the calculated value.
*/
public final static int ROUND_FLOOR = 3;
/**
* Rounding mode to round towards "nearest neighbor"
* unless both neighbors are equidistant, in which case round up.
* Behaves as for <tt>ROUND_UP</tt> if the discarded fraction is
* >= 0.5; otherwise, behaves as for <tt>ROUND_DOWN</tt>. Note
* that this is the rounding mode that most of us were taught in
* grade school.
*/
public final static int ROUND_HALF_UP = 4;
/**
* Rounding mode to round towards "nearest neighbor"
* unless both neighbors are equidistant, in which case round
* down. Behaves as for <tt>ROUND_UP</tt> if the discarded
* fraction is > 0.5; otherwise, behaves as for
* <tt>ROUND_DOWN</tt>.
*/
public final static int ROUND_HALF_DOWN = 5;
/**
* Rounding mode to round towards the "nearest neighbor"
* unless both neighbors are equidistant, in which case, round
* towards the even neighbor. Behaves as for
* <tt>ROUND_HALF_UP</tt> if the digit to the left of the
* discarded fraction is odd; behaves as for
* <tt>ROUND_HALF_DOWN</tt> if it's even. Note that this is the
* rounding mode that minimizes cumulative error when applied
* repeatedly over a sequence of calculations.
*/
public final static int ROUND_HALF_EVEN = 6;
/**
* Rounding mode to assert that the requested operation has an exact
* result, hence no rounding is necessary. If this rounding mode is
* specified on an operation that yields an inexact result, an
* <tt>ArithmeticException</tt> is thrown.
*/
public final static int ROUND_UNNECESSARY = 7;
// Scaling/Rounding Operations
/**
* Returns a <tt>BigDecimal</tt> rounded according to the
* <tt>MathContext</tt> settings. If the precision setting is 0 then
* no rounding takes place.
*
* <p>The effect of this method is identical to that of the
* {@link #plus(MathContext)} method.
*
* @param mc the context to use.
* @return a <tt>BigDecimal</tt> rounded according to the
* <tt>MathContext</tt> settings.
* @throws ArithmeticException if the rounding mode is
* <tt>UNNECESSARY</tt> and the
* <tt>BigDecimal</tt> operation would require rounding.
* @see #plus(MathContext)
* @since 1.5
*/
public BigDecimal round(MathContext mc) {
return plus(mc);
}
/**
* Returns a <tt>BigDecimal</tt> whose scale is the specified
* value, and whose unscaled value is determined by multiplying or
* dividing this <tt>BigDecimal</tt>'s unscaled value by the
* appropriate power of ten to maintain its overall value. If the
* scale is reduced by the operation, the unscaled value must be
* divided (rather than multiplied), and the value may be changed;
* in this case, the specified rounding mode is applied to the
* division.
*
* @param newScale scale of the <tt>BigDecimal</tt> value to be returned.
* @param roundingMode The rounding mode to apply.
* @return a <tt>BigDecimal</tt> whose scale is the specified value,
* and whose unscaled value is determined by multiplying or
* dividing this <tt>BigDecimal</tt>'s unscaled value by the
* appropriate power of ten to maintain its overall value.
* @throws ArithmeticException if <tt>roundingMode==UNNECESSARY</tt>
* and the specified scaling operation would require
* rounding.
* @see RoundingMode
* @since 1.5
*/
public BigDecimal setScale(int newScale, RoundingMode roundingMode) {
return setScale(newScale, roundingMode.oldMode);
}
/**
* Returns a <tt>BigDecimal</tt> whose scale is the specified
* value, and whose unscaled value is determined by multiplying or
* dividing this <tt>BigDecimal</tt>'s unscaled value by the
* appropriate power of ten to maintain its overall value. If the
* scale is reduced by the operation, the unscaled value must be
* divided (rather than multiplied), and the value may be changed;
* in this case, the specified rounding mode is applied to the
* division.
*
* <p>Note that since BigDecimal objects are immutable, calls of
* this method do <i>not</i> result in the original object being
* modified, contrary to the usual convention of having methods
* named <tt>set<i>X</i></tt> mutate field <tt><i>X</i></tt>.
* Instead, <tt>setScale</tt> returns an object with the proper
* scale; the returned object may or may not be newly allocated.
*
* <p>The new {@link #setScale(int, RoundingMode)} method should
* be used in preference to this legacy method.
*
* @param newScale scale of the <tt>BigDecimal</tt> value to be returned.
* @param roundingMode The rounding mode to apply.
* @return a <tt>BigDecimal</tt> whose scale is the specified value,
* and whose unscaled value is determined by multiplying or
* dividing this <tt>BigDecimal</tt>'s unscaled value by the
* appropriate power of ten to maintain its overall value.
* @throws ArithmeticException if <tt>roundingMode==ROUND_UNNECESSARY</tt>
* and the specified scaling operation would require
* rounding.
* @throws IllegalArgumentException if <tt>roundingMode</tt> does not
* represent a valid rounding mode.
* @see #ROUND_UP
* @see #ROUND_DOWN
* @see #ROUND_CEILING
* @see #ROUND_FLOOR
* @see #ROUND_HALF_UP
* @see #ROUND_HALF_DOWN
* @see #ROUND_HALF_EVEN
* @see #ROUND_UNNECESSARY
*/
public BigDecimal setScale(int newScale, int roundingMode) {
if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
throw new IllegalArgumentException("Invalid rounding mode");
if (newScale == this.scale) // easy case
return this;
if (this.signum() == 0) // zero can have any scale
return BigDecimal.valueOf(0, newScale);
if (newScale > this.scale) {
// [we can use checkScale to assure multiplier is valid]
int raise = checkScale((long)newScale - this.scale);
if (intCompact != INFLATED) {
long scaledResult = longTenToThe(intCompact, raise);
if (scaledResult != INFLATED)
return BigDecimal.valueOf(scaledResult, newScale);
this.inflate();
}
BigDecimal result = new BigDecimal(intVal.multiply(tenToThe(raise)),
newScale);
if (this.precision > 0)
result.precision = this.precision + newScale - this.scale;
return result;
}
// scale < this.scale
// we cannot perfectly predict the precision after rounding
return divide(ONE, newScale, roundingMode);
}
/**
* Returns a <tt>BigDecimal</tt> whose scale is the specified
* value, and whose value is numerically equal to this
* <tt>BigDecimal</tt>'s. Throws an <tt>ArithmeticException</tt>
* if this is not possible.
*
* <p>This call is typically used to increase the scale, in which
* case it is guaranteed that there exists a <tt>BigDecimal</tt>
* of the specified scale and the correct value. The call can
* also be used to reduce the scale if the caller knows that the
* <tt>BigDecimal</tt> has sufficiently many zeros at the end of
* its fractional part (i.e., factors of ten in its integer value)
* to allow for the rescaling without changing its value.
*
* <p>This method returns the same result as the two-argument
* versions of <tt>setScale</tt>, but saves the caller the trouble
* of specifying a rounding mode in cases where it is irrelevant.
*
* <p>Note that since <tt>BigDecimal</tt> objects are immutable,
* calls of this method do <i>not</i> result in the original
* object being modified, contrary to the usual convention of
* having methods named <tt>set<i>X</i></tt> mutate field
* <tt><i>X</i></tt>. Instead, <tt>setScale</tt> returns an
* object with the proper scale; the returned object may or may
* not be newly allocated.
*
* @param newScale scale of the <tt>BigDecimal</tt> value to be returned.
* @return a <tt>BigDecimal</tt> whose scale is the specified value, and
* whose unscaled value is determined by multiplying or dividing
* this <tt>BigDecimal</tt>'s unscaled value by the appropriate
* power of ten to maintain its overall value.
* @throws ArithmeticException if the specified scaling operation would
* require rounding.
* @see #setScale(int, int)
* @see #setScale(int, RoundingMode)
*/
public BigDecimal setScale(int newScale) {
return setScale(newScale, ROUND_UNNECESSARY);
}
// Decimal Point Motion Operations
/**
* Returns a <tt>BigDecimal</tt> which is equivalent to this one
* with the decimal point moved <tt>n</tt> places to the left. If
* <tt>n</tt> is non-negative, the call merely adds <tt>n</tt> to
* the scale. If <tt>n</tt> is negative, the call is equivalent
* to <tt>movePointRight(-n)</tt>. The <tt>BigDecimal</tt>
* returned by this call has value <tt>(this ×
* 10<sup>-n</sup>)</tt> and scale <tt>max(this.scale()+n,
* 0)</tt>.
*
* @param n number of places to move the decimal point to the left.
* @return a <tt>BigDecimal</tt> which is equivalent to this one with the
* decimal point moved <tt>n</tt> places to the left.
* @throws ArithmeticException if scale overflows.
*/
public BigDecimal movePointLeft(int n) {
// Cannot use movePointRight(-n) in case of n==Integer.MIN_VALUE
int newScale = checkScale((long)scale + n);
BigDecimal num;
if (intCompact != INFLATED)
num = BigDecimal.valueOf(intCompact, newScale);
else
num = new BigDecimal(intVal, newScale);
return (num.scale<0 ? num.setScale(0) : num);
}
/**
* Returns a <tt>BigDecimal</tt> which is equivalent to this one
* with the decimal point moved <tt>n</tt> places to the right.
* If <tt>n</tt> is non-negative, the call merely subtracts
* <tt>n</tt> from the scale. If <tt>n</tt> is negative, the call
* is equivalent to <tt>movePointLeft(-n)</tt>. The
* <tt>BigDecimal</tt> returned by this call has value <tt>(this
* × 10<sup>n</sup>)</tt> and scale <tt>max(this.scale()-n,
* 0)</tt>.
*
* @param n number of places to move the decimal point to the right.
* @return a <tt>BigDecimal</tt> which is equivalent to this one
* with the decimal point moved <tt>n</tt> places to the right.
* @throws ArithmeticException if scale overflows.
*/
public BigDecimal movePointRight(int n) {
// Cannot use movePointLeft(-n) in case of n==Integer.MIN_VALUE
int newScale = checkScale((long)scale - n);
BigDecimal num;
if (intCompact != INFLATED)
num = BigDecimal.valueOf(intCompact, newScale);
else
num = new BigDecimal(intVal, newScale);
return (num.scale<0 ? num.setScale(0) : num);
}
/**
* Returns a BigDecimal whose numerical value is equal to
* (<tt>this</tt> * 10<sup>n</sup>). The scale of
* the result is <tt>(this.scale() - n)</tt>.
*
* @throws ArithmeticException if the scale would be
* outside the range of a 32-bit integer.
*
* @since 1.5
*/
public BigDecimal scaleByPowerOfTen(int n) {
this.inflate();
BigDecimal num = new BigDecimal(intVal, checkScale((long)scale - n));
num.precision = precision;
return num;
}
/**
* Returns a <tt>BigDecimal</tt> which is numerically equal to
* this one but with any trailing zeros removed from the
* representation. For example, stripping the trailing zeros from
* the <tt>BigDecimal</tt> value <tt>600.0</tt>, which has
* [<tt>BigInteger</tt>, <tt>scale</tt>] components equals to
* [6000, 1], yields <tt>6E2</tt> with [<tt>BigInteger</tt>,
* <tt>scale</tt>] components equals to [6, -2]
*
* @return a numerically equal <tt>BigDecimal</tt> with any
* trailing zeros removed.
* @since 1.5
*/
public BigDecimal stripTrailingZeros() {
this.inflate();
return (new BigDecimal(intVal, scale)).stripZerosToMatchScale(Long.MIN_VALUE);
}
// Comparison Operations
/**
* Compares this <tt>BigDecimal</tt> with the specified
* <tt>BigDecimal</tt>. Two <tt>BigDecimal</tt> objects that are
* equal in value but have a different scale (like 2.0 and 2.00)
* are considered equal by this method. This method is provided
* in preference to individual methods for each of the six boolean
* comparison operators (<, ==, >, >=, !=, <=). The
* suggested idiom for performing these comparisons is:
* <tt>(x.compareTo(y)</tt> <<i>op</i>> <tt>0)</tt>, where
* <<i>op</i>> is one of the six comparison operators.
*
* @param val <tt>BigDecimal</tt> to which this <tt>BigDecimal</tt> is
* to be compared.
* @return -1, 0, or 1 as this <tt>BigDecimal</tt> is numerically
* less than, equal to, or greater than <tt>val</tt>.
*/
public int compareTo(BigDecimal val) {
if (this.scale == val.scale &&
this.intCompact != INFLATED &&
val.intCompact != INFLATED)
return longCompareTo(this.intCompact, val.intCompact);
// Optimization: would run fine without the next three lines
int sigDiff = signum() - val.signum();
if (sigDiff != 0)
return (sigDiff > 0 ? 1 : -1);
// If the (adjusted) exponents are different we do not need to
// expensively match scales and compare the significands
int aethis = this.precision() - this.scale; // [-1]
int aeval = val.precision() - val.scale; // [-1]
if (aethis < aeval)
return -this.signum();
else if (aethis > aeval)
return this.signum();
// Scale and compare intVals
BigDecimal arg[] = {this, val};
matchScale(arg);
if (arg[0].intCompact != INFLATED &&
arg[1].intCompact != INFLATED)
return longCompareTo(arg[0].intCompact, arg[1].intCompact);
return arg[0].inflate().intVal.compareTo(arg[1].inflate().intVal);
}
/**
* Compares this <tt>BigDecimal</tt> with the specified
* <tt>Object</tt> for equality. Unlike {@link
* #compareTo(BigDecimal) compareTo}, this method considers two
* <tt>BigDecimal</tt> objects equal only if they are equal in
* value and scale (thus 2.0 is not equal to 2.00 when compared by
* this method).
*
* @param x <tt>Object</tt> to which this <tt>BigDecimal</tt> is
* to be compared.
* @return <tt>true</tt> if and only if the specified <tt>Object</tt> is a
* <tt>BigDecimal</tt> whose value and scale are equal to this
* <tt>BigDecimal</tt>'s.
* @see #compareTo(java.math.BigDecimal)
* @see #hashCode
*/
public boolean equals(Object x) {
if (!(x instanceof BigDecimal))
return false;
BigDecimal xDec = (BigDecimal) x;
if (scale != xDec.scale)
return false;
if (this.intCompact != INFLATED && xDec.intCompact != INFLATED)
return this.intCompact == xDec.intCompact;
return this.inflate().intVal.equals(xDec.inflate().intVal);
}
/**
* Returns the minimum of this <tt>BigDecimal</tt> and
* <tt>val</tt>.
*
* @param val value with which the minimum is to be computed.
* @return the <tt>BigDecimal</tt> whose value is the lesser of this
* <tt>BigDecimal</tt> and <tt>val</tt>. If they are equal,
* as defined by the {@link #compareTo(BigDecimal) compareTo}
* method, <tt>this</tt> is returned.
* @see #compareTo(java.math.BigDecimal)
*/
public BigDecimal min(BigDecimal val) {
return (compareTo(val) <= 0 ? this : val);
}
/**
* Returns the maximum of this <tt>BigDecimal</tt> and <tt>val</tt>.
*
* @param val value with which the maximum is to be computed.
* @return the <tt>BigDecimal</tt> whose value is the greater of this
* <tt>BigDecimal</tt> and <tt>val</tt>. If they are equal,
* as defined by the {@link #compareTo(BigDecimal) compareTo}
* method, <tt>this</tt> is returned.
* @see #compareTo(java.math.BigDecimal)
*/
public BigDecimal max(BigDecimal val) {
return (compareTo(val) >= 0 ? this : val);
}
// Hash Function
/**
* Returns the hash code for this <tt>BigDecimal</tt>. Note that
* two <tt>BigDecimal</tt> objects that are numerically equal but
* differ in scale (like 2.0 and 2.00) will generally <i>not</i>
* have the same hash code.
*
* @return hash code for this <tt>BigDecimal</tt>.
* @see #equals(Object)
*/
public int hashCode() {
if (intCompact != INFLATED) {
long val2 = (intCompact < 0)?-intCompact:intCompact;
int temp = (int)( ((int)(val2 >>> 32)) * 31 +
(val2 & 0xffffffffL));
return 31*((intCompact < 0) ?-temp:temp) + scale;
} else
return 31*intVal.hashCode() + scale;
}
// Format Converters
/**
* Returns the string representation of this <tt>BigDecimal</tt>,
* using scientific notation if an exponent is needed.
*
* <p>A standard canonical string form of the <tt>BigDecimal</tt>
* is created as though by the following steps: first, the
* absolute value of the unscaled value of the <tt>BigDecimal</tt>
* is converted to a string in base ten using the characters
* <tt>'0'</tt> through <tt>'9'</tt> with no leading zeros (except
* if its value is zero, in which case a single <tt>'0'</tt>
* character is used).
*
* <p>Next, an <i>adjusted exponent</i> is calculated; this is the
* negated scale, plus the number of characters in the converted
* unscaled value, less one. That is,
* <tt>-scale+(ulength-1)</tt>, where <tt>ulength</tt> is the
* length of the absolute value of the unscaled value in decimal
* digits (its <i>precision</i>).
*
* <p>If the scale is greater than or equal to zero and the
* adjusted exponent is greater than or equal to <tt>-6</tt>, the
* number will be converted to a character form without using
* exponential notation. In this case, if the scale is zero then
* no decimal point is added and if the scale is positive a
* decimal point will be inserted with the scale specifying the
* number of characters to the right of the decimal point.
* <tt>'0'</tt> characters are added to the left of the converted
* unscaled value as necessary. If no character precedes the
* decimal point after this insertion then a conventional
* <tt>'0'</tt> character is prefixed.
*
* <p>Otherwise (that is, if the scale is negative, or the
* adjusted exponent is less than <tt>-6</tt>), the number will be
* converted to a character form using exponential notation. In
* this case, if the converted <tt>BigInteger</tt> has more than
* one digit a decimal point is inserted after the first digit.
* An exponent in character form is then suffixed to the converted
* unscaled value (perhaps with inserted decimal point); this
* comprises the letter <tt>'E'</tt> followed immediately by the
* adjusted exponent converted to a character form. The latter is
* in base ten, using the characters <tt>'0'</tt> through
* <tt>'9'</tt> with no leading zeros, and is always prefixed by a
* sign character <tt>'-'</tt> (<tt>'\u002D'</tt>) if the
* adjusted exponent is negative, <tt>'+'</tt>
* (<tt>'\u002B'</tt>) otherwise).
*
* <p>Finally, the entire string is prefixed by a minus sign
* character <tt>'-'</tt> (<tt>'\u002D'</tt>) if the unscaled
* value is less than zero. No sign character is prefixed if the
* unscaled value is zero or positive.
*
* <p><b>Examples:</b>
* <p>For each representation [<i>unscaled value</i>, <i>scale</i>]
* on the left, the resulting string is shown on the right.
* <pre>
* [123,0] "123"
* [-123,0] "-123"
* [123,-1] "1.23E+3"
* [123,-3] "1.23E+5"
* [123,1] "12.3"
* [123,5] "0.00123"
* [123,10] "1.23E-8"
* [-123,12] "-1.23E-10"
* </pre>
*
* <b>Notes:</b>
* <ol>
*
* <li>There is a one-to-one mapping between the distinguishable
* <tt>BigDecimal</tt> values and the result of this conversion.
* That is, every distinguishable <tt>BigDecimal</tt> value
* (unscaled value and scale) has a unique string representation
* as a result of using <tt>toString</tt>. If that string
* representation is converted back to a <tt>BigDecimal</tt> using
* the {@link #BigDecimal(String)} constructor, then the original
* value will be recovered.
*
* <li>The string produced for a given number is always the same;
* it is not affected by locale. This means that it can be used
* as a canonical string representation for exchanging decimal
* data, or as a key for a Hashtable, etc. Locale-sensitive
* number formatting and parsing is handled by the {@link
* java.text.NumberFormat} class and its subclasses.
*
* <li>The {@link #toEngineeringString} method may be used for
* presenting numbers with exponents in engineering notation, and the
* {@link #setScale(int,RoundingMode) setScale} method may be used for
* rounding a <tt>BigDecimal</tt> so it has a known number of digits after
* the decimal point.
*
* <li>The digit-to-character mapping provided by
* <tt>Character.forDigit</tt> is used.
*
* </ol>
*
* @return string representation of this <tt>BigDecimal</tt>.
* @see Character#forDigit
* @see #BigDecimal(java.lang.String)
*/
public String toString() {
if (stringCache == null)
stringCache = layoutChars(true);
return stringCache;
}
/**
* Returns a string representation of this <tt>BigDecimal</tt>,
* using engineering notation if an exponent is needed.
*
* <p>Returns a string that represents the <tt>BigDecimal</tt> as
* described in the {@link #toString()} method, except that if
* exponential notation is used, the power of ten is adjusted to
* be a multiple of three (engineering notation) such that the
* integer part of nonzero values will be in the range 1 through
* 999. If exponential notation is used for zero values, a
* decimal point and one or two fractional zero digits are used so
* that the scale of the zero value is preserved. Note that
* unlike the output of {@link #toString()}, the output of this
* method is <em>not</em> guaranteed to recover the same [integer,
* scale] pair of this <tt>BigDecimal</tt> if the output string is
* converting back to a <tt>BigDecimal</tt> using the {@linkplain
* #BigDecimal(String) string constructor}. The result of this method meets
* the weaker constraint of always producing a numerically equal
* result from applying the string constructor to the method's output.
*
* @return string representation of this <tt>BigDecimal</tt>, using
* engineering notation if an exponent is needed.
* @since 1.5
*/
public String toEngineeringString() {
return layoutChars(false);
}
/**
* Returns a string representation of this <tt>BigDecimal</tt>
* without an exponent field. For values with a positive scale,
* the number of digits to the right of the decimal point is used
* to indicate scale. For values with a zero or negative scale,
* the resulting string is generated as if the value were
* converted to a numerically equal value with zero scale and as
* if all the trailing zeros of the zero scale value were present
* in the result.
*
* The entire string is prefixed by a minus sign character '-'
* (<tt>'\u002D'</tt>) if the unscaled value is less than
* zero. No sign character is prefixed if the unscaled value is
* zero or positive.
*
* Note that if the result of this method is passed to the
* {@linkplain #BigDecimal(String) string constructor}, only the
* numerical value of this <tt>BigDecimal</tt> will necessarily be
* recovered; the representation of the new <tt>BigDecimal</tt>
* may have a different scale. In particular, if this
* <tt>BigDecimal</tt> has a negative scale, the string resulting
* from this method will have a scale of zero when processed by
* the string constructor.
*
* (This method behaves analogously to the <tt>toString</tt>
* method in 1.4 and earlier releases.)
*
* @return a string representation of this <tt>BigDecimal</tt>
* without an exponent field.
* @since 1.5
* @see #toString()
* @see #toEngineeringString()
*/
public String toPlainString() {
BigDecimal bd = this;
if (bd.scale < 0)
bd = bd.setScale(0);
bd.inflate();
if (bd.scale == 0) // No decimal point
return bd.intVal.toString();
return bd.getValueString(bd.signum(), bd.intVal.abs().toString(), bd.scale);
}
/* Returns a digit.digit string */
private String getValueString(int signum, String intString, int scale) {
/* Insert decimal point */
StringBuilder buf;
int insertionPoint = intString.length() - scale;
if (insertionPoint == 0) { /* Point goes right before intVal */
return (signum<0 ? "-0." : "0.") + intString;
} else if (insertionPoint > 0) { /* Point goes inside intVal */
buf = new StringBuilder(intString);
buf.insert(insertionPoint, '.');
if (signum < 0)
buf.insert(0, '-');
} else { /* We must insert zeros between point and intVal */
buf = new StringBuilder(3-insertionPoint + intString.length());
buf.append(signum<0 ? "-0." : "0.");
for (int i=0; i<-insertionPoint; i++)
buf.append('0');
buf.append(intString);
}
return buf.toString();
}
/**
* Converts this <tt>BigDecimal</tt> to a <tt>BigInteger</tt>.
* This conversion is analogous to a <a
* href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
* primitive conversion</i></a> from <tt>double</tt> to
* <tt>long</tt> as defined in the <a
* href="http://java.sun.com/docs/books/jls/html/">Java Language
* Specification</a>: any fractional part of this
* <tt>BigDecimal</tt> will be discarded. Note that this
* conversion can lose information about the precision of the
* <tt>BigDecimal</tt> value.
* <p>
* To have an exception thrown if the conversion is inexact (in
* other words if a nonzero fractional part is discarded), use the
* {@link #toBigIntegerExact()} method.
*
* @return this <tt>BigDecimal</tt> converted to a <tt>BigInteger</tt>.
*/
public BigInteger toBigInteger() {
// force to an integer, quietly
return this.setScale(0, ROUND_DOWN).inflate().intVal;
}
/**
* Converts this <tt>BigDecimal</tt> to a <tt>BigInteger</tt>,
* checking for lost information. An exception is thrown if this
* <tt>BigDecimal</tt> has a nonzero fractional part.
*
* @return this <tt>BigDecimal</tt> converted to a <tt>BigInteger</tt>.
* @throws ArithmeticException if <tt>this</tt> has a nonzero
* fractional part.
* @since 1.5
*/
public BigInteger toBigIntegerExact() {
// round to an integer, with Exception if decimal part non-0
return this.setScale(0, ROUND_UNNECESSARY).inflate().intVal;
}
/**
* Converts this <tt>BigDecimal</tt> to a <tt>long</tt>. This
* conversion is analogous to a <a
* href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
* primitive conversion</i></a> from <tt>double</tt> to
* <tt>short</tt> as defined in the <a
* href="http://java.sun.com/docs/books/jls/html/">Java Language
* Specification</a>: any fractional part of this
* <tt>BigDecimal</tt> will be discarded, and if the resulting
* "<tt>BigInteger</tt>" is too big to fit in a
* <tt>long</tt>, only the low-order 64 bits are returned.
* Note that this conversion can lose information about the
* overall magnitude and precision of this <tt>BigDecimal</tt> value as well
* as return a result with the opposite sign.
*
* @return this <tt>BigDecimal</tt> converted to a <tt>long</tt>.
*/
public long longValue(){
return (intCompact != INFLATED && scale == 0) ?
intCompact:
toBigInteger().longValue();
}
/**
* Converts this <tt>BigDecimal</tt> to a <tt>long</tt>, checking
* for lost information. If this <tt>BigDecimal</tt> has a
* nonzero fractional part or is out of the possible range for a
* <tt>long</tt> result then an <tt>ArithmeticException</tt> is
* thrown.
*
* @return this <tt>BigDecimal</tt> converted to a <tt>long</tt>.
* @throws ArithmeticException if <tt>this</tt> has a nonzero
* fractional part, or will not fit in a <tt>long</tt>.
* @since 1.5
*/
public long longValueExact() {
if (intCompact != INFLATED && scale == 0)
return intCompact;
// If more than 19 digits in integer part it cannot possibly fit
if ((precision() - scale) > 19) // [OK for negative scale too]
throw new java.lang.ArithmeticException("Overflow");
// Fastpath zero and < 1.0 numbers (the latter can be very slow
// to round if very small)
if (this.signum() == 0)
return 0;
if ((this.precision() - this.scale) <= 0)
throw new ArithmeticException("Rounding necessary");
// round to an integer, with Exception if decimal part non-0
BigDecimal num = this.setScale(0, ROUND_UNNECESSARY).inflate();
if (num.precision() >= 19) { // need to check carefully
if (LONGMIN == null) { // initialize constants
LONGMIN = BigInteger.valueOf(Long.MIN_VALUE);
LONGMAX = BigInteger.valueOf(Long.MAX_VALUE);
}
if ((num.intVal.compareTo(LONGMIN) < 0) ||
(num.intVal.compareTo(LONGMAX) > 0))
throw new java.lang.ArithmeticException("Overflow");
}
return num.intVal.longValue();
}
// These constants are only initialized if needed
/** BigInteger equal to Long.MIN_VALUE. */
private static BigInteger LONGMIN = null;
/** BigInteger equal to Long.MAX_VALUE. */
private static BigInteger LONGMAX = null;
/**
* Converts this <tt>BigDecimal</tt> to an <tt>int</tt>. This
* conversion is analogous to a <a
* href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
* primitive conversion</i></a> from <tt>double</tt> to
* <tt>short</tt> as defined in the <a
* href="http://java.sun.com/docs/books/jls/html/">Java Language
* Specification</a>: any fractional part of this
* <tt>BigDecimal</tt> will be discarded, and if the resulting
* "<tt>BigInteger</tt>" is too big to fit in an
* <tt>int</tt>, only the low-order 32 bits are returned.
* Note that this conversion can lose information about the
* overall magnitude and precision of this <tt>BigDecimal</tt>
* value as well as return a result with the opposite sign.
*
* @return this <tt>BigDecimal</tt> converted to an <tt>int</tt>.
*/
public int intValue() {
return (intCompact != INFLATED && scale == 0) ?
(int)intCompact :
toBigInteger().intValue();
}
/**
* Converts this <tt>BigDecimal</tt> to an <tt>int</tt>, checking
* for lost information. If this <tt>BigDecimal</tt> has a
* nonzero fractional part or is out of the possible range for an
* <tt>int</tt> result then an <tt>ArithmeticException</tt> is
* thrown.
*
* @return this <tt>BigDecimal</tt> converted to an <tt>int</tt>.
* @throws ArithmeticException if <tt>this</tt> has a nonzero
* fractional part, or will not fit in an <tt>int</tt>.
* @since 1.5
*/
public int intValueExact() {
long num;
num = this.longValueExact(); // will check decimal part
if ((int)num != num)
throw new java.lang.ArithmeticException("Overflow");
return (int)num;
}
/**
* Converts this <tt>BigDecimal</tt> to a <tt>short</tt>, checking
* for lost information. If this <tt>BigDecimal</tt> has a
* nonzero fractional part or is out of the possible range for a
* <tt>short</tt> result then an <tt>ArithmeticException</tt> is
* thrown.
*
* @return this <tt>BigDecimal</tt> converted to a <tt>short</tt>.
* @throws ArithmeticException if <tt>this</tt> has a nonzero
* fractional part, or will not fit in a <tt>short</tt>.
* @since 1.5
*/
public short shortValueExact() {
long num;
num = this.longValueExact(); // will check decimal part
if ((short)num != num)
throw new java.lang.ArithmeticException("Overflow");
return (short)num;
}
/**
* Converts this <tt>BigDecimal</tt> to a <tt>byte</tt>, checking
* for lost information. If this <tt>BigDecimal</tt> has a
* nonzero fractional part or is out of the possible range for a
* <tt>byte</tt> result then an <tt>ArithmeticException</tt> is
* thrown.
*
* @return this <tt>BigDecimal</tt> converted to a <tt>byte</tt>.
* @throws ArithmeticException if <tt>this</tt> has a nonzero
* fractional part, or will not fit in a <tt>byte</tt>.
* @since 1.5
*/
public byte byteValueExact() {
long num;
num = this.longValueExact(); // will check decimal part
if ((byte)num != num)
throw new java.lang.ArithmeticException("Overflow");
return (byte)num;
}
/**
* Converts this <tt>BigDecimal</tt> to a <tt>float</tt>.
* This conversion is similar to the <a
* href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
* primitive conversion</i></a> from <tt>double</tt> to
* <tt>float</tt> defined in the <a
* href="http://java.sun.com/docs/books/jls/html/">Java Language
* Specification</a>: if this <tt>BigDecimal</tt> has too great a
* magnitude to represent as a <tt>float</tt>, it will be
* converted to {@link Float#NEGATIVE_INFINITY} or {@link
* Float#POSITIVE_INFINITY} as appropriate. Note that even when
* the return value is finite, this conversion can lose
* information about the precision of the <tt>BigDecimal</tt>
* value.
*
* @return this <tt>BigDecimal</tt> converted to a <tt>float</tt>.
*/
public float floatValue(){
if (scale == 0 && intCompact != INFLATED)
return (float)intCompact;
// Somewhat inefficient, but guaranteed to work.
return Float.parseFloat(this.toString());
}
/**
* Converts this <tt>BigDecimal</tt> to a <tt>double</tt>.
* This conversion is similar to the <a
* href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
* primitive conversion</i></a> from <tt>double</tt> to
* <tt>float</tt> as defined in the <a
* href="http://java.sun.com/docs/books/jls/html/">Java Language
* Specification</a>: if this <tt>BigDecimal</tt> has too great a
* magnitude represent as a <tt>double</tt>, it will be
* converted to {@link Double#NEGATIVE_INFINITY} or {@link
* Double#POSITIVE_INFINITY} as appropriate. Note that even when
* the return value is finite, this conversion can lose
* information about the precision of the <tt>BigDecimal</tt>
* value.
*
* @return this <tt>BigDecimal</tt> converted to a <tt>double</tt>.
*/
public double doubleValue(){
if (scale == 0 && intCompact != INFLATED)
return (double)intCompact;
// Somewhat inefficient, but guaranteed to work.
return Double.parseDouble(this.toString());
}
/**
* Returns the size of an ulp, a unit in the last place, of this
* <tt>BigDecimal</tt>. An ulp of a nonzero <tt>BigDecimal</tt>
* value is the positive distance between this value and the
* <tt>BigDecimal</tt> value next larger in magnitude with the
* same number of digits. An ulp of a zero value is numerically
* equal to 1 with the scale of <tt>this</tt>. The result is
* stored with the same scale as <code>this</code> so the result
* for zero and nonzero values is equal to <code>[1,
* this.scale()]</code>.
*
* @return the size of an ulp of <tt>this</tt>
* @since 1.5
*/
public BigDecimal ulp() {
return BigDecimal.valueOf(1, this.scale());
}
// Private "Helper" Methods
/**
* Lay out this <tt>BigDecimal</tt> into a <tt>char[]</tt> array.
* The Java 1.2 equivalent to this was called <tt>getValueString</tt>.
*
* @param sci <tt>true</tt> for Scientific exponential notation;
* <tt>false</tt> for Engineering
* @return string with canonical string representation of this
* <tt>BigDecimal</tt>
*/
private String layoutChars(boolean sci) {
if (scale == 0) // zero scale is trivial
return (intCompact != INFLATED) ?
Long.toString(intCompact):
intVal.toString();
// Get the significand as an absolute value
char coeff[];
if (intCompact != INFLATED)
coeff = Long.toString(Math.abs(intCompact)).toCharArray();
else
coeff = intVal.abs().toString().toCharArray();
// Construct a buffer, with sufficient capacity for all cases.
// If E-notation is needed, length will be: +1 if negative, +1
// if '.' needed, +2 for "E+", + up to 10 for adjusted exponent.
// Otherwise it could have +1 if negative, plus leading "0.00000"
StringBuilder buf=new StringBuilder(coeff.length+14);
if (signum() < 0) // prefix '-' if negative
buf.append('-');
long adjusted = -(long)scale + (coeff.length-1);
if ((scale >= 0) && (adjusted >= -6)) { // plain number
int pad = scale - coeff.length; // count of padding zeros
if (pad >= 0) { // 0.xxx form
buf.append('0');
buf.append('.');
for (; pad>0; pad--) {
buf.append('0');
}
buf.append(coeff);
} else { // xx.xx form
buf.append(coeff, 0, -pad);
buf.append('.');
buf.append(coeff, -pad, scale);
}
} else { // E-notation is needed
if (sci) { // Scientific notation
buf.append(coeff[0]); // first character
if (coeff.length > 1) { // more to come
buf.append('.');
buf.append(coeff, 1, coeff.length-1);
}
} else { // Engineering notation
int sig = (int)(adjusted % 3);
if (sig < 0)
sig += 3; // [adjusted was negative]
adjusted -= sig; // now a multiple of 3
sig++;
if (signum() == 0) {
switch (sig) {
case 1:
buf.append('0'); // exponent is a multiple of three
break;
case 2:
buf.append("0.00");
adjusted += 3;
break;
case 3:
buf.append("0.0");
adjusted += 3;
break;
default:
throw new AssertionError("Unexpected sig value " + sig);
}
} else if (sig >= coeff.length) { // significand all in integer
buf.append(coeff, 0, coeff.length);
// may need some zeros, too
for (int i = sig - coeff.length; i > 0; i--)
buf.append('0');
} else { // xx.xxE form
buf.append(coeff, 0, sig);
buf.append('.');
buf.append(coeff, sig, coeff.length-sig);
}
}
if (adjusted != 0) { // [!sci could have made 0]
buf.append('E');
if (adjusted > 0) // force sign for positive
buf.append('+');
buf.append(adjusted);
}
}
return buf.toString();
}
/**
* Return 10 to the power n, as a <tt>BigInteger</tt>.
*
* @param n the power of ten to be returned (>=0)
* @return a <tt>BigInteger</tt> with the value (10<sup>n</sup>)
*/
private static BigInteger tenToThe(int n) {
if (n < TENPOWERS.length) // use value from constant array
return TENPOWERS[n];
// BigInteger.pow is slow, so make 10**n by constructing a
// BigInteger from a character string (still not very fast)
char tenpow[] = new char[n + 1];
tenpow[0] = '1';
for (int i = 1; i <= n; i++)
tenpow[i] = '0';
return new BigInteger(tenpow);
}
private static BigInteger TENPOWERS[] = {BigInteger.ONE,
BigInteger.valueOf(10), BigInteger.valueOf(100),
BigInteger.valueOf(1000), BigInteger.valueOf(10000),
BigInteger.valueOf(100000), BigInteger.valueOf(1000000),
BigInteger.valueOf(10000000), BigInteger.valueOf(100000000),
BigInteger.valueOf(1000000000)};
/**
* Compute val * 10 ^ n; return this product if it is
* representable as a long, INFLATED otherwise.
*/
private static long longTenToThe(long val, int n) {
// System.err.print("\tval " + val + "\t power " + n + "\tresult ");
if (n >= 0 && n < thresholds.length) {
if (Math.abs(val) <= thresholds[n][0] ) {
// System.err.println(val * thresholds[n][1]);
return val * thresholds[n][1];
}
}
// System.err.println(INFLATED);
return INFLATED;
}
private static long thresholds[][] = {
{Long.MAX_VALUE, 1L}, // 0
{Long.MAX_VALUE/10L, 10L}, // 1
{Long.MAX_VALUE/100L, 100L}, // 2
{Long.MAX_VALUE/1000L, 1000L}, // 3
{Long.MAX_VALUE/10000L, 10000L}, // 4
{Long.MAX_VALUE/100000L, 100000L}, // 5
{Long.MAX_VALUE/1000000L, 1000000L}, // 6
{Long.MAX_VALUE/10000000L, 10000000L}, // 7
{Long.MAX_VALUE/100000000L, 100000000L}, // 8
{Long.MAX_VALUE/1000000000L, 1000000000L}, // 9
{Long.MAX_VALUE/10000000000L, 10000000000L}, // 10
{Long.MAX_VALUE/100000000000L, 100000000000L}, // 11
{Long.MAX_VALUE/1000000000000L, 1000000000000L},// 12
{Long.MAX_VALUE/100000000000000L, 10000000000000L},// 13
};
private static boolean compactLong(long val) {
return (val != Long.MIN_VALUE);
}
/**
* Assign appropriate BigInteger to intVal field if intVal is
* null, i.e. the compact representation is in use.
*/
private BigDecimal inflate() {
if (intVal == null)
intVal = BigInteger.valueOf(intCompact);
return this;
}
/**
* Match the scales of two <tt>BigDecimal</tt>s to align their
* least significant digits.
*
* <p>If the scales of val[0] and val[1] differ, rescale
* (non-destructively) the lower-scaled <tt>BigDecimal</tt> so
* they match. That is, the lower-scaled reference will be
* replaced by a reference to a new object with the same scale as
* the other <tt>BigDecimal</tt>.
*
* @param val array of two elements referring to the two
* <tt>BigDecimal</tt>s to be aligned.
*/
private static void matchScale(BigDecimal[] val) {
if (val[0].scale < val[1].scale)
val[0] = val[0].setScale(val[1].scale);
else if (val[1].scale < val[0].scale)
val[1] = val[1].setScale(val[0].scale);
}
/**
* Reconstitute the <tt>BigDecimal</tt> instance from a stream (that is,
* deserialize it).
*
* @param s the stream being read.
*/
private synchronized void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in all fields
s.defaultReadObject();
// validate possibly bad fields
if (intVal == null) {
String message = "BigDecimal: null intVal in stream";
throw new java.io.StreamCorruptedException(message);
// [all values of scale are now allowed]
}
// Set intCompact to uninitialized value; could also see if the
// intVal was small enough to fit as a compact value.
intCompact = INFLATED;
}
/**
* Serialize this <tt>BigDecimal</tt> to the stream in question
*
* @param s the stream to serialize to.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Must inflate to maintain compatible serial form.
this.inflate();
// Write proper fields
s.defaultWriteObject();
}
/**
* Returns the length of this <tt>BigDecimal</tt>, in decimal digits.
*
* Notes:
*<ul>
* <li> This is performance-critical; most operations where a
* context is supplied will need at least one call to this
* method.
*
* <li> This should be a method on BigInteger; the call to this
* method in precision() can then be replaced with the
* term: intVal.digitLength(). It could also be called
* precision() in BigInteger.
*
* Better still -- the precision lookaside could be moved to
* BigInteger, too.
*
* <li> This could/should use MutableBigIntegers directly for the
* reduction loop.
*<ul>
* @return the length of the unscaled value, in decimal digits
*/
private int digitLength() {
if (intCompact != INFLATED && Math.abs(intCompact) <= Integer.MAX_VALUE)
return intLength(Math.abs((int)intCompact));
if (signum() == 0) // 0 is one decimal digit
return 1;
this.inflate();
// we have a nonzero magnitude
BigInteger work = intVal;
int digits = 0; // counter
for (;work.mag.length>1;) {
// here when more than one integer in the magnitude; divide
// by a billion (reduce by 9 digits) and try again
work = work.divide(TENPOWERS[9]);
digits += 9;
if (work.signum() == 0) // the division was exact
return digits; // (a power of a billion)
}
// down to a simple nonzero integer
digits += intLength(work.mag[0]);
// System.out.println("digitLength... "+this+" -> "+digits);
return digits;
}
private static int[] ilogTable = {
0,
9,
99,
999,
9999,
99999,
999999,
9999999,
99999999,
999999999,
Integer.MAX_VALUE};
/**
* Returns the length of an unsigned <tt>int</tt>, in decimal digits.
* @param i the <tt>int</tt> (treated as unsigned)
* @return the length of the unscaled value, in decimal digits
*/
private int intLength(int x) {
int digits;
if (x < 0) { // 'negative' is 10 digits unsigned
return 10;
} else { // positive integer
if (x <= 9)
return 1;
// "Hacker's Delight" section 11-4
for(int i = -1; ; i++) {
if (x <= ilogTable[i+1])
return i +1;
}
}
}
/**
* Remove insignificant trailing zeros from this
* <tt>BigDecimal</tt> until the preferred scale is reached or no
* more zeros can be removed. If the preferred scale is less than
* Integer.MIN_VALUE, all the trailing zeros will be removed.
*
* <tt>BigInteger</tt> assistance could help, here?
*
* <p>WARNING: This method should only be called on new objects as
* it mutates the value fields.
*
* @return this <tt>BigDecimal</tt> with a scale possibly reduced
* to be closed to the preferred scale.
*/
private BigDecimal stripZerosToMatchScale(long preferredScale) {
boolean compact = (intCompact != INFLATED);
this.inflate();
BigInteger qr[]; // quotient-remainder pair
while ( intVal.abs().compareTo(BigInteger.TEN) >= 0 &&
scale > preferredScale) {
if (intVal.testBit(0))
break; // odd number cannot end in 0
qr = intVal.divideAndRemainder(BigInteger.TEN);
if (qr[1].signum() != 0)
break; // non-0 remainder
intVal=qr[0];
scale = checkScale((long)scale-1); // could Overflow
if (precision > 0) // adjust precision if known
precision--;
}
if (compact)
intCompact = intVal.longValue();
return this;
}
/**
* Check a scale for Underflow or Overflow. If this BigDecimal is
* uninitialized or initialized and nonzero, throw an exception if
* the scale is out of range. If this is zero, saturate the scale
* to the extreme value of the right sign if the scale is out of
* range.
*
* @param val The new scale.
* @throws ArithmeticException (overflow or underflow) if the new
* scale is out of range.
* @return validated scale as an int.
*/
private int checkScale(long val) {
if ((int)val != val) {
if ((this.intCompact != INFLATED && this.intCompact != 0) ||
(this.intVal != null && this.signum() != 0) ||
(this.intVal == null && this.intCompact == INFLATED) ) {
if (val > Integer.MAX_VALUE)
throw new ArithmeticException("Underflow");
if (val < Integer.MIN_VALUE)
throw new ArithmeticException("Overflow");
} else {
return (val > Integer.MAX_VALUE)?Integer.MAX_VALUE:Integer.MIN_VALUE;
}
}
return (int)val;
}
/**
* Round an operand; used only if digits > 0. Does not change
* <tt>this</tt>; if rounding is needed a new <tt>BigDecimal</tt>
* is created and returned.
*
* @param mc the context to use.
* @throws ArithmeticException if the result is inexact but the
* rounding mode is <tt>UNNECESSARY</tt>.
*/
private BigDecimal roundOp(MathContext mc) {
BigDecimal rounded = doRound(mc);
return rounded;
}
/** Round this BigDecimal according to the MathContext settings;
* used only if precision > 0.
*
* <p>WARNING: This method should only be called on new objects as
* it mutates the value fields.
*
* @param mc the context to use.
* @throws ArithmeticException if the rounding mode is
* <tt>RoundingMode.UNNECESSARY</tt> and the
* <tt>BigDecimal</tt> operation would require rounding.
*/
private void roundThis(MathContext mc) {
BigDecimal rounded = doRound(mc);
if (rounded == this) // wasn't rounded
return;
this.intVal = rounded.intVal;
this.intCompact = rounded.intCompact;
this.scale = rounded.scale;
this.precision = rounded.precision;
}
/**
* Returns a <tt>BigDecimal</tt> rounded according to the
* MathContext settings; used only if <tt>mc.precision>0</tt>.
* Does not change <tt>this</tt>; if rounding is needed a new
* <tt>BigDecimal</tt> is created and returned.
*
* @param mc the context to use.
* @return a <tt>BigDecimal</tt> rounded according to the MathContext
* settings. May return this, if no rounding needed.
* @throws ArithmeticException if the rounding mode is
* <tt>RoundingMode.UNNECESSARY</tt> and the
* result is inexact.
*/
private BigDecimal doRound(MathContext mc) {
this.inflate();
if (precision == 0) {
if (mc.roundingMax != null
&& intVal.compareTo(mc.roundingMax) < 0
&& intVal.compareTo(mc.roundingMin) > 0)
return this; // no rounding needed
precision(); // find it
}
int drop = precision - mc.precision; // digits to discard
if (drop <= 0) // we fit
return this;
BigDecimal rounded = dropDigits(mc, drop);
// we need to double-check, in case of the 999=>1000 case
return rounded.doRound(mc);
}
/**
* Removes digits from the significand of a <tt>BigDecimal</tt>,
* rounding according to the MathContext settings. Does not
* change <tt>this</tt>; a new <tt>BigDecimal</tt> is always
* created and returned.
*
* <p>Actual rounding is carried out, as before, by the divide
* method, as this minimized code changes. It might be more
* efficient in most cases to move rounding to here, so we can do
* a round-to-length rather than round-to-scale.
*
* @param mc the context to use.
* @param drop the number of digits to drop, must be > 0
* @return a <tt>BigDecimal</tt> rounded according to the MathContext
* settings. May return <tt>this</tt>, if no rounding needed.
* @throws ArithmeticException if the rounding mode is
* <tt>RoundingMode.UNNECESSARY</tt> and the
* result is inexact.
*/
private BigDecimal dropDigits(MathContext mc, int drop) {
// here if we need to round; make the divisor = 10**drop)
// [calculating the BigInteger here saves setScale later]
BigDecimal divisor = new BigDecimal(tenToThe(drop), 0);
// divide to same scale to force round to length
BigDecimal rounded = this.divide(divisor, scale,
mc.roundingMode.oldMode);
rounded.scale = checkScale((long)rounded.scale - drop ); // adjust the scale
return rounded;
}
private static int longCompareTo(long x, long y) {
return (x < y) ? -1 : (x == y) ? 0 : 1;
}
/*
* Internal printing routine
*/
private static void print(String name, BigDecimal bd) {
System.err.format("%s:\tintCompact %d\tintVal %d\tscale %d\tprecision %d%n",
name,
bd.intCompact,
bd.intVal,
bd.scale,
bd.precision);
}
/**
* Check internal invariants of this BigDecimal. These invariants
* include:
*
* <ul>
*
* <li>The object must be initialized; either intCompact must not be
* INFLATED or intVal is non-null. Both of these conditions may
* be true.
*
* <li>If both intCompact and intVal and set, their values must be
* consistent.
*
* <li>If precision is nonzero, it must have the right value.
* </ul>
*/
private BigDecimal audit() {
// Check precision
if (precision > 0) {
if (precision != digitLength()) {
print("audit", this);
throw new AssertionError("precision mismatch");
}
}
if (intCompact == INFLATED) {
if (intVal == null) {
print("audit", this);
throw new AssertionError("null intVal");
}
} else {
if (intVal != null) {
long val = intVal.longValue();
if (val != intCompact) {
print("audit", this);
throw new AssertionError("Inconsistent state, intCompact=" +
intCompact + "\t intVal=" + val);
}
}
}
return this;
}
}