API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.math. BigDecimal View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536

/*
 * @(#)BigDecimal.java	1.64 06/11/28
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

/*
 * @(#)BigDecimal.java  1.x 01/xx/xx
 *
 * Copyright 1996-2001 Sun Microsystems, Inc. All Rights Reserved.
 * Portions Copyright IBM Corporation, 2001. All Rights Reserved.
 *
 * This software is the proprietary information of Sun Microsystems, Inc.
 * Use is subject to license terms.
 *
 */

package java.math;

/**
 * Immutable, arbitrary-precision signed decimal numbers.  A
 * <tt>BigDecimal</tt> consists of an arbitrary precision integer
 * <i>unscaled value</i> and a 32-bit integer <i>scale</i>.  If zero
 * or positive, the scale is the number of digits to the right of the
 * decimal point.  If negative, the unscaled value of the number is
 * multiplied by ten to the power of the negation of the scale.  The
 * value of the number represented by the <tt>BigDecimal</tt> is
 * therefore <tt>(unscaledValue &times; 10<sup>-scale</sup>)</tt>.
 * 
 * <p>The <tt>BigDecimal</tt> class provides operations for
 * arithmetic, scale manipulation, rounding, comparison, hashing, and
 * format conversion.  The {@link #toString} method provides a
 * canonical representation of a <tt>BigDecimal</tt>.
 * 
 * <p>The <tt>BigDecimal</tt> class gives its user complete control
 * over rounding behavior.  If no rounding mode is specified and the
 * exact result cannot be represented, an exception is thrown;
 * otherwise, calculations can be carried out to a chosen precision
 * and rounding mode by supplying an appropriate {@link MathContext}
 * object to the operation.  In either case, eight <em>rounding
 * modes</em> are provided for the control of rounding.  Using the
 * integer fields in this class (such as {@link #ROUND_HALF_UP}) to
 * represent rounding mode is largely obsolete; the enumeration values
 * of the <tt>RoundingMode</tt> <tt>enum</tt>, (such as {@link
 * RoundingMode#HALF_UP}) should be used instead.
 * 
 * <p>When a <tt>MathContext</tt> object is supplied with a precision
 * setting of 0 (for example, {@link MathContext#UNLIMITED}),
 * arithmetic operations are exact, as are the arithmetic methods
 * which take no <tt>MathContext</tt> object.  (This is the only
 * behavior that was supported in releases prior to 5.)  As a
 * corollary of computing the exact result, the rounding mode setting
 * of a <tt>MathContext</tt> object with a precision setting of 0 is
 * not used and thus irrelevant.  In the case of divide, the exact
 * quotient could have an infinitely long decimal expansion; for
 * example, 1 divided by 3.  If the quotient has a nonterminating
 * decimal expansion and the operation is specified to return an exact
 * result, an <tt>ArithmeticException</tt> is thrown.  Otherwise, the
 * exact result of the division is returned, as done for other
 * operations.
 *
 * <p>When the precision setting is not 0, the rules of
 * <tt>BigDecimal</tt> arithmetic are broadly compatible with selected
 * modes of operation of the arithmetic defined in ANSI X3.274-1996
 * and ANSI X3.274-1996/AM 1-2000 (section 7.4).  Unlike those
 * standards, <tt>BigDecimal</tt> includes many rounding modes, which
 * were mandatory for division in <tt>BigDecimal</tt> releases prior
 * to 5.  Any conflicts between these ANSI standards and the
 * <tt>BigDecimal</tt> specification are resolved in favor of
 * <tt>BigDecimal</tt>.  
 *
 * <p>Since the same numerical value can have different
 * representations (with different scales), the rules of arithmetic
 * and rounding must specify both the numerical result and the scale
 * used in the result's representation.
 *
 *
 * <p>In general the rounding modes and precision setting determine
 * how operations return results with a limited number of digits when
 * the exact result has more digits (perhaps infinitely many in the
 * case of division) than the number of digits returned.
 *
 * First, the
 * total number of digits to return is specified by the
 * <tt>MathContext</tt>'s <tt>precision</tt> setting; this determines
 * the result's <i>precision</i>.  The digit count starts from the
 * leftmost nonzero digit of the exact result.  The rounding mode
 * determines how any discarded trailing digits affect the returned
 * result.
 *
 * <p>For all arithmetic operators , the operation is carried out as
 * though an exact intermediate result were first calculated and then
 * rounded to the number of digits specified by the precision setting
 * (if necessary), using the selected rounding mode.  If the exact
 * result is not returned, some digit positions of the exact result
 * are discarded.  When rounding increases the magnitude of the
 * returned result, it is possible for a new digit position to be
 * created by a carry propagating to a leading &quot;9&quot; digit.
 * For example, rounding the value 999.9 to three digits rounding up
 * would be numerically equal to one thousand, represented as
 * 100&times;10<sup>1</sup>.  In such cases, the new &quot;1&quot; is
 * the leading digit position of the returned result.
 *
 * <p>Besides a logical exact result, each arithmetic operation has a
 * preferred scale for representing a result.  The preferred
 * scale for each operation is listed in the table below.
 *
 * <table border>
 * <caption top><h3>Preferred Scales for Results of Arithmetic Operations
 * </h3></caption>
 * <tr><th>Operation</th><th>Preferred Scale of Result</th></tr>
 * <tr><td>Add</td><td>max(addend.scale(), augend.scale())</td>
 * <tr><td>Subtract</td><td>max(minuend.scale(), subtrahend.scale())</td>
 * <tr><td>Multiply</td><td>multiplier.scale() + multiplicand.scale()</td>
 * <tr><td>Divide</td><td>dividend.scale() - divisor.scale()</td>
 * </table>
 *
 * These scales are the ones used by the methods which return exact
 * arithmetic results; except that an exact divide may have to use a
 * larger scale since the exact result may have more digits.  For
 * example, <tt>1/32</tt> is <tt>0.03125</tt>.
 *
 * <p>Before rounding, the scale of the logical exact intermediate
 * result is the preferred scale for that operation.  If the exact
 * numerical result cannot be represented in <code>precision</code>
 * digits, rounding selects the set of digits to return and the scale
 * of the result is reduced from the scale of the intermediate result
 * to the least scale which can represent the <code>precision</code>
 * digits actually returned.  If the exact result can be represented
 * with at most <code>precision</code> digits, the representation
 * of the result with the scale closest to the preferred scale is
 * returned.  In particular, an exactly representable quotient may be
 * represented in fewer than <code>precision</code> digits by removing
 * trailing zeros and decreasing the scale.  For example, rounding to
 * three digits using the {@linkplain RoundingMode#FLOOR floor}
 * rounding mode, <br>
 *
 * <code>19/100 = 0.19   // integer=19,  scale=2</code> <br>
 *
 * but<br>
 *
 * <code>21/110 = 0.190  // integer=190, scale=3</code> <br>
 *
 * <p>Note that for add, subtract, and multiply, the reduction in
 * scale will equal the number of digit positions of the exact result
 * which are discarded. If the rounding causes a carry propagation to
 * create a new high-order digit position, an additional digit of the
 * result is discarded than when no new digit position is created.
 *
 * <p>Other methods may have slightly different rounding semantics.
 * For example, the result of the <tt>pow</tt> method using the
 * {@linkplain #pow(int, MathContext) specified algorithm} can
 * occasionally differ from the rounded mathematical result by more
 * than one unit in the last place, one <i>{@linkplain #ulp() ulp}</i>.
 *
 * <p>Two types of operations are provided for manipulating the scale
 * of a <tt>BigDecimal</tt>: scaling/rounding operations and decimal
 * point motion operations.  Scaling/rounding operations ({@link
 * #setScale setScale} and {@link #round round}) return a
 * <tt>BigDecimal</tt> whose value is approximately (or exactly) equal
 * to that of the operand, but whose scale or precision is the
 * specified value; that is, they increase or decrease the precision
 * of the stored number with minimal effect on its value.  Decimal
 * point motion operations ({@link #movePointLeft movePointLeft} and
 * {@link #movePointRight movePointRight}) return a
 * <tt>BigDecimal</tt> created from the operand by moving the decimal
 * point a specified distance in the specified direction.
 * 
 * <p>For the sake of brevity and clarity, pseudo-code is used
 * throughout the descriptions of <tt>BigDecimal</tt> methods.  The
 * pseudo-code expression <tt>(i + j)</tt> is shorthand for &quot;a
 * <tt>BigDecimal</tt> whose value is that of the <tt>BigDecimal</tt>
 * <tt>i</tt> added to that of the <tt>BigDecimal</tt>
 * <tt>j</tt>.&quot; The pseudo-code expression <tt>(i == j)</tt> is
 * shorthand for &quot;<tt>true</tt> if and only if the
 * <tt>BigDecimal</tt> <tt>i</tt> represents the same value as the
 * <tt>BigDecimal</tt> <tt>j</tt>.&quot; Other pseudo-code expressions
 * are interpreted similarly.  Square brackets are used to represent
 * the particular <tt>BigInteger</tt> and scale pair defining a
 * <tt>BigDecimal</tt> value; for example [19, 2] is the
 * <tt>BigDecimal</tt> numerically equal to 0.19 having a scale of 2.
 *
 * <p>Note: care should be exercised if <tt>BigDecimal</tt> objects
 * are used as keys in a {@link java.util.SortedMap SortedMap} or
 * elements in a {@link java.util.SortedSet SortedSet} since
 * <tt>BigDecimal</tt>'s <i>natural ordering</i> is <i>inconsistent
 * with equals</i>.  See {@link Comparable}, {@link
 * java.util.SortedMap} or {@link java.util.SortedSet} for more
 * information.
 * 
 * <p>All methods and constructors for this class throw
 * <tt>NullPointerException</tt> when passed a <tt>null</tt> object
 * reference for any input parameter.
 *
 * @see     BigInteger
 * @see     MathContext
 * @see     RoundingMode
 * @see     java.util.SortedMap
 * @see     java.util.SortedSet
 * @author  Josh Bloch
 * @author  Mike Cowlishaw
 * @author  Joseph D. Darcy
 */
public class BigDecimal extends Number implements Comparable<BigDecimal> {
    /**
     * The unscaled value of this BigDecimal, as returned by {@link
     * #unscaledValue}.
     *
     * @serial
     * @see #unscaledValue
     */
    private volatile BigInteger intVal;

    /**
     * The scale of this BigDecimal, as returned by {@link #scale}.
     *
     * @serial
     * @see #scale
     */
    private int scale = 0;  // Note: this may have any value, so
                            // calculations must be done in longs
    /**
     * The number of decimal digits in this BigDecimal, or 0 if the
     * number of digits are not known (lookaside information).  If
     * nonzero, the value is guaranteed correct.  Use the precision()
     * method to obtain and set the value if it might be 0.  This
     * field is mutable until set nonzero.
     *
     * @since  1.5
     */
    private volatile transient int precision = 0;

    /**
     * Used to store the canonical string representation, if computed.
     */
    private volatile transient String stringCache = null;

    /**
     * Sentinel value for {@link #intCompact} indicating the
     * significand information is only available from {@code intVal}.
     */
    private static final long INFLATED = Long.MIN_VALUE;

    /**
     * If the absolute value of the significand of this BigDecimal is
     * less than or equal to {@code Long.MAX_VALUE}, the value can be
     * compactly stored in this field and used in computations.
     */
    private transient long intCompact = INFLATED;

    // All 18-digit base ten strings fit into a long; not all 19-digit
    // strings will
    private static final int MAX_COMPACT_DIGITS = 18;

    private static final int MAX_BIGINT_BITS = 62;

    /* Appease the serialization gods */
    private static final long serialVersionUID = 6108874887143696463L;

    // Cache of common small BigDecimal values.
    private static final BigDecimal zeroThroughTen[] = {
	new BigDecimal(BigInteger.ZERO,		0,  0),
        new BigDecimal(BigInteger.ONE,		1,  0),
        new BigDecimal(BigInteger.valueOf(2),	2,  0),
        new BigDecimal(BigInteger.valueOf(3),	3,  0),
        new BigDecimal(BigInteger.valueOf(4),	4,  0),
        new BigDecimal(BigInteger.valueOf(5),	5,  0),
        new BigDecimal(BigInteger.valueOf(6),	6,  0),
        new BigDecimal(BigInteger.valueOf(7),	7,  0),
        new BigDecimal(BigInteger.valueOf(8),	8,  0),
        new BigDecimal(BigInteger.valueOf(9),	9,  0),
        new BigDecimal(BigInteger.TEN,		10, 0),
    };

    // Constants
    /**
     * The value 0, with a scale of 0.
     *
     * @since  1.5
     */
    public static final BigDecimal ZERO =
        zeroThroughTen[0];

    /**
     * The value 1, with a scale of 0.
     *
     * @since  1.5
     */
    public static final BigDecimal ONE =
        zeroThroughTen[1];

    /**
     * The value 10, with a scale of 0.
     *
     * @since  1.5
     */
    public static final BigDecimal TEN =
	zeroThroughTen[10];

    // Constructors

    /**
     * Translates a character array representation of a
     * <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
     * same sequence of characters as the {@link #BigDecimal(String)}
     * constructor, while allowing a sub-array to be specified.
     * 
     * <p>Note that if the sequence of characters is already available
     * within a character array, using this constructor is faster than
     * converting the <tt>char</tt> array to string and using the
     * <tt>BigDecimal(String)</tt> constructor .
     *
     * @param  in <tt>char</tt> array that is the source of characters.
     * @param  offset first character in the array to inspect.
     * @param  len number of characters to consider.
     * @throws NumberFormatException if <tt>in</tt> is not a valid
     *         representation of a <tt>BigDecimal</tt> or the defined subarray
     *         is not wholly within <tt>in</tt>.
     * @since  1.5
     */
    public BigDecimal(char[] in, int offset, int len) {
        // This is the primary string to BigDecimal constructor; all
        // incoming strings end up here; it uses explicit (inline)
        // parsing for speed and generates at most one intermediate
        // (temporary) object (a char[] array).

        // use array bounds checking to handle too-long, len == 0,
        // bad offset, etc.
        try {
            // handle the sign
            boolean isneg = false;          // assume positive
            if (in[offset] == '-') {
                isneg = true;               // leading minus means negative
                offset++;
                len--;
            } else if (in[offset] == '+') { // leading + allowed
                offset++;
                len--;
            }

            // should now be at numeric part of the significand
            int dotoff = -1;                 // '.' offset, -1 if none
            int cfirst = offset;             // record start of integer
            long exp = 0;                    // exponent
            if (len > in.length)             // protect against huge length
                throw new NumberFormatException();
            char coeff[] = new char[len];    // integer significand array
            char c;                          // work

            for (; len > 0; offset++, len--) {
                c = in[offset];
                if ((c >= '0' && c <= '9') || Character.isDigit(c)) {
                    // have digit
                    coeff[precision] = c;
                    precision++;             // count of digits
                    continue;
                }
                if (c == '.') {
                    // have dot
                    if (dotoff >= 0)         // two dots
                        throw new NumberFormatException();
                    dotoff = offset;
                    continue;
                }
                // exponent expected
                if ((c != 'e') && (c != 'E'))
                    throw new NumberFormatException();
                offset++;
                c = in[offset];
                len--;
                boolean negexp = false;
                // optional sign
                if (c == '-' || c == '+') {
                    negexp = (c == '-');
                    offset++;
                    c = in[offset];
                    len--;
                }
                if (len <= 0)    // no exponent digits
                    throw new NumberFormatException();
		// skip leading zeros in the exponent 
		while (len > 10 && Character.digit(c, 10) == 0) {
			offset++;
			c = in[offset];
			len--;
		}
		if (len > 10)  // too many nonzero exponent digits
                    throw new NumberFormatException();
                // c now holds first digit of exponent
                for (;; len--) {
                    int v;
                    if (c >= '0' && c <= '9') {
                        v = c - '0';
                    } else {
                        v = Character.digit(c, 10);
                        if (v < 0)            // not a digit
                            throw new NumberFormatException();
                    }
                    exp = exp * 10 + v;
                    if (len == 1)
                        break;               // that was final character
                    offset++;
                    c = in[offset];
                }
                if (negexp)                  // apply sign
                    exp = -exp;
                // Next test is required for backwards compatibility
                if ((int)exp != exp)         // overflow
                    throw new NumberFormatException();
                break;                       // [saves a test]
                }
            // here when no characters left
            if (precision == 0)              // no digits found
                throw new NumberFormatException();

            if (dotoff >= 0) {               // had dot; set scale
                scale = precision - (dotoff - cfirst);
                // [cannot overflow]
            }
            if (exp != 0) {                  // had significant exponent
		try {
		    scale = checkScale(-exp + scale); // adjust
		} catch (ArithmeticException e) { 
		    throw new NumberFormatException("Scale out of range.");
		}
            }

            // Remove leading zeros from precision (digits count)
            int first = 0;
            for (; (coeff[first] == '0' || Character.digit(coeff[first], 10) == 0) && 
		     precision > 1; 
		 first++) 
                precision--;

	    // Set the significand ..
	    // Copy significand to exact-sized array, with sign if
	    // negative
	    // Later use: BigInteger(coeff, first, precision) for
	    //   both cases, by allowing an extra char at the front of
	    //   coeff.
	    char quick[];
	    if (!isneg) {
		quick = new char[precision];
		System.arraycopy(coeff, first, quick, 0, precision);
	    } else {
		quick = new char[precision+1];
		quick[0] = '-';
		System.arraycopy(coeff, first, quick, 1, precision);
	    }
	    if (precision <= MAX_COMPACT_DIGITS) 
		intCompact = Long.parseLong(new String(quick));
	    else
		intVal = new BigInteger(quick);
	    // System.out.println(" new: " +intVal+" ["+scale+"] "+precision);
        } catch (ArrayIndexOutOfBoundsException e) {
            throw new NumberFormatException();
        } catch (NegativeArraySizeException e) {
            throw new NumberFormatException();
        }
    }

    /**
     * Translates a character array representation of a
     * <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
     * same sequence of characters as the {@link #BigDecimal(String)}
     * constructor, while allowing a sub-array to be specified and
     * with rounding according to the context settings.
     * 
     * <p>Note that if the sequence of characters is already available
     * within a character array, using this constructor is faster than
     * converting the <tt>char</tt> array to string and using the
     * <tt>BigDecimal(String)</tt> constructor .
     *
     * @param  in <tt>char</tt> array that is the source of characters.
     * @param  offset first character in the array to inspect.
     * @param  len number of characters to consider..
     * @param  mc the context to use.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @throws NumberFormatException if <tt>in</tt> is not a valid
     *         representation of a <tt>BigDecimal</tt> or the defined subarray
     *         is not wholly within <tt>in</tt>.
     * @since  1.5
     */
    public BigDecimal(char[] in, int offset, int len, MathContext mc) {
        this(in, offset, len);
        if (mc.precision > 0)
            roundThis(mc);
    }

    /**
     * Translates a character array representation of a
     * <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
     * same sequence of characters as the {@link #BigDecimal(String)}
     * constructor.
     * 
     * <p>Note that if the sequence of characters is already available
     * as a character array, using this constructor is faster than
     * converting the <tt>char</tt> array to string and using the
     * <tt>BigDecimal(String)</tt> constructor .
     *
     * @param in <tt>char</tt> array that is the source of characters.
     * @throws NumberFormatException if <tt>in</tt> is not a valid
     *         representation of a <tt>BigDecimal</tt>.
     * @since  1.5
     */
    public BigDecimal(char[] in) {
        this(in, 0, in.length);
    }

    /**
     * Translates a character array representation of a
     * <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
     * same sequence of characters as the {@link #BigDecimal(String)}
     * constructor and with rounding according to the context
     * settings.
     * 
     * <p>Note that if the sequence of characters is already available
     * as a character array, using this constructor is faster than
     * converting the <tt>char</tt> array to string and using the
     * <tt>BigDecimal(String)</tt> constructor .
     *
     * @param  in <tt>char</tt> array that is the source of characters.
     * @param  mc the context to use.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @throws NumberFormatException if <tt>in</tt> is not a valid
     *         representation of a <tt>BigDecimal</tt>.
     * @since  1.5
     */
    public BigDecimal(char[] in, MathContext mc) {
        this(in, 0, in.length, mc);
    }

    /**
     * Translates the string representation of a <tt>BigDecimal</tt>
     * into a <tt>BigDecimal</tt>.  The string representation consists
     * of an optional sign, <tt>'+'</tt> (<tt>'&#92;u002B'</tt>) or
     * <tt>'-'</tt> (<tt>'&#92;u002D'</tt>), followed by a sequence of
     * zero or more decimal digits ("the integer"), optionally
     * followed by a fraction, optionally followed by an exponent.
     * 
     * <p>The fraction consists of a decimal point followed by zero
     * or more decimal digits.  The string must contain at least one
     * digit in either the integer or the fraction.  The number formed
     * by the sign, the integer and the fraction is referred to as the
     * <i>significand</i>.
     *
     * <p>The exponent consists of the character <tt>'e'</tt>
     * (<tt>'&#92;u0065'</tt>) or <tt>'E'</tt> (<tt>'&#92;u0045'</tt>)
     * followed by one or more decimal digits.  The value of the
     * exponent must lie between -{@link Integer#MAX_VALUE} ({@link
     * Integer#MIN_VALUE}+1) and {@link Integer#MAX_VALUE}, inclusive.
     *
     * <p>More formally, the strings this constructor accepts are
     * described by the following grammar:
     * <blockquote>
     * <dl>
     * <dt><i>BigDecimalString:</i>
     * <dd><i>Sign<sub>opt</sub> Significand Exponent<sub>opt</sub></i>
     * <p>
     * <dt><i>Sign:</i>
     * <dd><tt>+</tt>
     * <dd><tt>-</tt>
     * <p>
     * <dt><i>Significand:</i>
     * <dd><i>IntegerPart</i> <tt>.</tt> <i>FractionPart<sub>opt</sub></i>
     * <dd><tt>.</tt> <i>FractionPart</i>
     * <dd><i>IntegerPart</i>
     * <p>
     * <dt><i>IntegerPart:
     * <dd>Digits</i>
     * <p>
     * <dt><i>FractionPart:
     * <dd>Digits</i>
     * <p>
     * <dt><i>Exponent:
     * <dd>ExponentIndicator SignedInteger</i>
     * <p>
     * <dt><i>ExponentIndicator:</i>
     * <dd><tt>e</tt>
     * <dd><tt>E</tt>
     * <p>
     * <dt><i>SignedInteger:
     * <dd>Sign<sub>opt</sub> Digits</i>
     * <p>
     * <dt><i>Digits:
     * <dd>Digit
     * <dd>Digits Digit</i>
     * <p>
     * <dt><i>Digit:</i>
     * <dd>any character for which {@link Character#isDigit}
     * returns <tt>true</tt>, including 0, 1, 2 ...
     * </dl>
     * </blockquote>
     *
     * <p>The scale of the returned <tt>BigDecimal</tt> will be the
     * number of digits in the fraction, or zero if the string
     * contains no decimal point, subject to adjustment for any
     * exponent; if the string contains an exponent, the exponent is
     * subtracted from the scale.  The value of the resulting scale
     * must lie between <tt>Integer.MIN_VALUE</tt> and
     * <tt>Integer.MAX_VALUE</tt>, inclusive.
     *
     * <p>The character-to-digit mapping is provided by {@link
     * java.lang.Character#digit} set to convert to radix 10.  The
     * String may not contain any extraneous characters (whitespace,
     * for example).
     *
     * <p><b>Examples:</b><br>
     * The value of the returned <tt>BigDecimal</tt> is equal to
     * <i>significand</i> &times; 10<sup>&nbsp;<i>exponent</i></sup>.  
     * For each string on the left, the resulting representation
     * [<tt>BigInteger</tt>, <tt>scale</tt>] is shown on the right.
     * <pre>
     * "0"            [0,0]
     * "0.00"         [0,2]
     * "123"          [123,0]
     * "-123"         [-123,0]
     * "1.23E3"       [123,-1]
     * "1.23E+3"      [123,-1]
     * "12.3E+7"      [123,-6]
     * "12.0"         [120,1]
     * "12.3"         [123,1]
     * "0.00123"      [123,5]
     * "-1.23E-12"    [-123,14]
     * "1234.5E-4"    [12345,5]
     * "0E+7"         [0,-7]
     * "-0"           [0,0]
     * </pre>
     *
     * <p>Note: For values other than <tt>float</tt> and
     * <tt>double</tt> NaN and &plusmn;Infinity, this constructor is
     * compatible with the values returned by {@link Float#toString}
     * and {@link Double#toString}.  This is generally the preferred
     * way to convert a <tt>float</tt> or <tt>double</tt> into a
     * BigDecimal, as it doesn't suffer from the unpredictability of
     * the {@link #BigDecimal(double)} constructor.
     *
     * @param val String representation of <tt>BigDecimal</tt>.
     *
     * @throws NumberFormatException if <tt>val</tt> is not a valid 
     *	       representation of a <tt>BigDecimal</tt>.
     */
    public BigDecimal(String val) {
        this(val.toCharArray(), 0, val.length());
    }

    /**
     * Translates the string representation of a <tt>BigDecimal</tt>
     * into a <tt>BigDecimal</tt>, accepting the same strings as the
     * {@link #BigDecimal(String)} constructor, with rounding
     * according to the context settings.
     * 
     * @param  val string representation of a <tt>BigDecimal</tt>.
     * @param  mc the context to use.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @throws NumberFormatException if <tt>val</tt> is not a valid
     *         representation of a BigDecimal.
     * @since  1.5
     */
    public BigDecimal(String val, MathContext mc) {
        this(val.toCharArray(), 0, val.length());
        if (mc.precision > 0)
            roundThis(mc);
    }

    /**
     * Translates a <tt>double</tt> into a <tt>BigDecimal</tt> which
     * is the exact decimal representation of the <tt>double</tt>'s
     * binary floating-point value.  The scale of the returned
     * <tt>BigDecimal</tt> is the smallest value such that
     * <tt>(10<sup>scale</sup> &times; val)</tt> is an integer.
     * <p>
     * <b>Notes:</b>
     * <ol>
     * <li>
     * The results of this constructor can be somewhat unpredictable.
     * One might assume that writing <tt>new BigDecimal(0.1)</tt> in
     * Java creates a <tt>BigDecimal</tt> which is exactly equal to
     * 0.1 (an unscaled value of 1, with a scale of 1), but it is
     * actually equal to
     * 0.1000000000000000055511151231257827021181583404541015625.
     * This is because 0.1 cannot be represented exactly as a
     * <tt>double</tt> (or, for that matter, as a binary fraction of
     * any finite length).  Thus, the value that is being passed
     * <i>in</i> to the constructor is not exactly equal to 0.1,
     * appearances notwithstanding.
     *
     * <li>
     * The <tt>String</tt> constructor, on the other hand, is
     * perfectly predictable: writing <tt>new BigDecimal("0.1")</tt>
     * creates a <tt>BigDecimal</tt> which is <i>exactly</i> equal to
     * 0.1, as one would expect.  Therefore, it is generally
     * recommended that the {@linkplain #BigDecimal(String)
     * <tt>String</tt> constructor} be used in preference to this one.
     *
     * <li>
     * When a <tt>double</tt> must be used as a source for a
     * <tt>BigDecimal</tt>, note that this constructor provides an
     * exact conversion; it does not give the same result as
     * converting the <tt>double</tt> to a <tt>String</tt> using the
     * {@link Double#toString(double)} method and then using the
     * {@link #BigDecimal(String)} constructor.  To get that result,
     * use the <tt>static</tt> {@link #valueOf(double)} method.
     * </ol>
     *
     * @param val <tt>double</tt> value to be converted to 
     *        <tt>BigDecimal</tt>.
     * @throws NumberFormatException if <tt>val</tt> is infinite or NaN.
     */
    public BigDecimal(double val) {
 	if (Double.isInfinite(val) || Double.isNaN(val))
 	    throw new NumberFormatException("Infinite or NaN");

 	// Translate the double into sign, exponent and significand, according
 	// to the formulae in JLS, Section 20.10.22.
 	long valBits = Double.doubleToLongBits(val);
 	int sign = ((valBits >> 63)==0 ? 1 : -1);
 	int exponent = (int) ((valBits >> 52) & 0x7ffL);
 	long significand = (exponent==0 ? (valBits & ((1L<<52) - 1)) << 1
			    : (valBits & ((1L<<52) - 1)) | (1L<<52));
 	exponent -= 1075;
 	// At this point, val == sign * significand * 2**exponent.

 	/*
 	 * Special case zero to supress nonterminating normalization
 	 * and bogus scale calculation.
 	 */
 	if (significand == 0) {
 	    intVal = BigInteger.ZERO;
  	    intCompact = 0;
 	    precision = 1;
 	    return;
 	}

 	// Normalize
 	while((significand & 1) == 0) {    //  i.e., significand is even
 	    significand >>= 1;
 	    exponent++;
 	}

 	// Calculate intVal and scale
 	intVal = BigInteger.valueOf(sign*significand);
 	if (exponent < 0) {
 	    intVal = intVal.multiply(BigInteger.valueOf(5).pow(-exponent));
 	    scale = -exponent;
 	} else if (exponent > 0) {
 	    intVal = intVal.multiply(BigInteger.valueOf(2).pow(exponent));
 	}
   	if (intVal.bitLength() <= MAX_BIGINT_BITS) {
   	    intCompact = intVal.longValue();
   	}
    }

    /**
     * Translates a <tt>double</tt> into a <tt>BigDecimal</tt>, with
     * rounding according to the context settings.  The scale of the
     * <tt>BigDecimal</tt> is the smallest value such that
     * <tt>(10<sup>scale</sup> &times; val)</tt> is an integer.
     * 
     * <p>The results of this constructor can be somewhat unpredictable
     * and its use is generally not recommended; see the notes under
     * the {@link #BigDecimal(double)} constructor.
     *
     * @param  val <tt>double</tt> value to be converted to 
     *         <tt>BigDecimal</tt>.
     * @param  mc the context to use.
     * @throws ArithmeticException if the result is inexact but the
     *         RoundingMode is UNNECESSARY.
     * @throws NumberFormatException if <tt>val</tt> is infinite or NaN.
     * @since  1.5
     */
    public BigDecimal(double val, MathContext mc) {
        this(val);
        if (mc.precision > 0)
            roundThis(mc);
    }

    /**
     * Translates a <tt>BigInteger</tt> into a <tt>BigDecimal</tt>.
     * The scale of the <tt>BigDecimal</tt> is zero.
     *
     * @param val <tt>BigInteger</tt> value to be converted to
     *            <tt>BigDecimal</tt>.
     */
    public BigDecimal(BigInteger val) {
        intVal = val;
 	if (val.bitLength() <= MAX_BIGINT_BITS) {
  	    intCompact = val.longValue();
  	}
    }

    /**
     * Translates a <tt>BigInteger</tt> into a <tt>BigDecimal</tt>
     * rounding according to the context settings.  The scale of the
     * <tt>BigDecimal</tt> is zero.
     * 
     * @param val <tt>BigInteger</tt> value to be converted to
     *            <tt>BigDecimal</tt>.
     * @param  mc the context to use.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @since  1.5
     */
    public BigDecimal(BigInteger val, MathContext mc) {
        intVal = val;
        if (mc.precision > 0)
            roundThis(mc);
    }

    /**
     * Translates a <tt>BigInteger</tt> unscaled value and an
     * <tt>int</tt> scale into a <tt>BigDecimal</tt>.  The value of
     * the <tt>BigDecimal</tt> is
     * <tt>(unscaledVal &times; 10<sup>-scale</sup>)</tt>.
     *
     * @param unscaledVal unscaled value of the <tt>BigDecimal</tt>.
     * @param scale scale of the <tt>BigDecimal</tt>.
     */
    public BigDecimal(BigInteger unscaledVal, int scale) {
        // Negative scales are now allowed
        intVal = unscaledVal;
        this.scale = scale;
  	if (unscaledVal.bitLength() <= MAX_BIGINT_BITS) {
  	    intCompact = unscaledVal.longValue();
  	}
    }

    /**
     * Translates a <tt>BigInteger</tt> unscaled value and an
     * <tt>int</tt> scale into a <tt>BigDecimal</tt>, with rounding
     * according to the context settings.  The value of the
     * <tt>BigDecimal</tt> is <tt>(unscaledVal &times;
     * 10<sup>-scale</sup>)</tt>, rounded according to the
     * <tt>precision</tt> and rounding mode settings.
     *
     * @param  unscaledVal unscaled value of the <tt>BigDecimal</tt>.
     * @param  scale scale of the <tt>BigDecimal</tt>.
     * @param  mc the context to use.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @since  1.5
     */
    public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) {
        intVal = unscaledVal;
        this.scale = scale;
        if (mc.precision > 0)
            roundThis(mc);
    }

    /**
     * Translates an <tt>int</tt> into a <tt>BigDecimal</tt>.  The
     * scale of the <tt>BigDecimal</tt> is zero.
     *
     * @param val <tt>int</tt> value to be converted to
     *            <tt>BigDecimal</tt>.
     * @since  1.5
     */
    public BigDecimal(int val) {
	intCompact = val;
    }

    /**
     * Translates an <tt>int</tt> into a <tt>BigDecimal</tt>, with
     * rounding according to the context settings.  The scale of the
     * <tt>BigDecimal</tt>, before any rounding, is zero.
     * 
     * @param  val <tt>int</tt> value to be converted to <tt>BigDecimal</tt>.
     * @param  mc the context to use.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @since  1.5
     */
    public BigDecimal(int val, MathContext mc) {
	intCompact = val;
        if (mc.precision > 0)
            roundThis(mc);
    }

    /**
     * Translates a <tt>long</tt> into a <tt>BigDecimal</tt>.  The
     * scale of the <tt>BigDecimal</tt> is zero.
     *
     * @param val <tt>long</tt> value to be converted to <tt>BigDecimal</tt>.
     * @since  1.5
     */
    public BigDecimal(long val) {
	if (compactLong(val))
	    intCompact = val;
	else
	    intVal = BigInteger.valueOf(val);
    }

    /**
     * Translates a <tt>long</tt> into a <tt>BigDecimal</tt>, with
     * rounding according to the context settings.  The scale of the
     * <tt>BigDecimal</tt>, before any rounding, is zero.
     * 
     * @param  val <tt>long</tt> value to be converted to <tt>BigDecimal</tt>.
     * @param  mc the context to use.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @since  1.5
     */
    public BigDecimal(long val, MathContext mc) {
	if (compactLong(val))
	    intCompact = val;
	else
	    intVal = BigInteger.valueOf(val);
        if (mc.precision > 0)
            roundThis(mc);
    }

    /**
     * Trusted internal constructor
     */
    private BigDecimal(long val, int scale) {
	this.intCompact = val;
	this.scale = scale;
    }

    /**
     * Trusted internal constructor
     */
    private BigDecimal(BigInteger intVal, long val, int scale) {
	this.intVal = intVal;
	this.intCompact = val;
	this.scale = scale;
    }

    // Static Factory Methods

    /**
     * Translates a <tt>long</tt> unscaled value and an
     * <tt>int</tt> scale into a <tt>BigDecimal</tt>.  This
     * &quot;static factory method&quot; is provided in preference to
     * a (<tt>long</tt>, <tt>int</tt>) constructor because it
     * allows for reuse of frequently used <tt>BigDecimal</tt> values..
     *
     * @param unscaledVal unscaled value of the <tt>BigDecimal</tt>.
     * @param scale scale of the <tt>BigDecimal</tt>.
     * @return a <tt>BigDecimal</tt> whose value is
     *	       <tt>(unscaledVal &times; 10<sup>-scale</sup>)</tt>.
     */
    public static BigDecimal valueOf(long unscaledVal, int scale) {
        if (scale == 0 && unscaledVal >= 0 && unscaledVal <= 10) {
	    return zeroThroughTen[(int)unscaledVal];
        }
	if (compactLong(unscaledVal))
	    return new BigDecimal(unscaledVal, scale);
        return new BigDecimal(BigInteger.valueOf(unscaledVal), scale);
    }

    /**
     * Translates a <tt>long</tt> value into a <tt>BigDecimal</tt>
     * with a scale of zero.  This &quot;static factory method&quot;
     * is provided in preference to a (<tt>long</tt>) constructor
     * because it allows for reuse of frequently used
     * <tt>BigDecimal</tt> values.
     *
     * @param val value of the <tt>BigDecimal</tt>.
     * @return a <tt>BigDecimal</tt> whose value is <tt>val</tt>.
     */
    public static BigDecimal valueOf(long val) {
	return valueOf(val, 0);
    }

    /**
     * Translates a <tt>double</tt> into a <tt>BigDecimal</tt>, using
     * the <tt>double</tt>'s canonical string representation provided
     * by the {@link Double#toString(double)} method.
     * 
     * <p><b>Note:</b> This is generally the preferred way to convert
     * a <tt>double</tt> (or <tt>float</tt>) into a
     * <tt>BigDecimal</tt>, as the value returned is equal to that
     * resulting from constructing a <tt>BigDecimal</tt> from the
     * result of using {@link Double#toString(double)}.
     *
     * @param  val <tt>double</tt> to convert to a <tt>BigDecimal</tt>.
     * @return a <tt>BigDecimal</tt> whose value is equal to or approximately
     *         equal to the value of <tt>val</tt>.
     * @throws NumberFormatException if <tt>val</tt> is infinite or NaN.
     * @since  1.5
     */
    public static BigDecimal valueOf(double val) {
        // Reminder: a zero double returns '0.0', so we cannot fastpath
        // to use the constant ZERO.  This might be important enough to
        // justify a factory approach, a cache, or a few private
        // constants, later.
        return new BigDecimal(Double.toString(val));
    }

    // Arithmetic Operations
    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this +
     * augend)</tt>, and whose scale is <tt>max(this.scale(),
     * augend.scale())</tt>.
     *
     * @param  augend value to be added to this <tt>BigDecimal</tt>.
     * @return <tt>this + augend</tt>
     */
    public BigDecimal add(BigDecimal augend) {
        BigDecimal arg[] = {this, augend};
        matchScale(arg);

	long x = arg[0].intCompact;
	long y = arg[1].intCompact;

	// Might be able to do a more clever check incorporating the
	// inflated check into the overflow computation.
	if (x != INFLATED && y != INFLATED) {
	    long sum = x + y;
	    /*
	     * If the sum is not an overflowed value, continue to use
	     * the compact representation.  if either of x or y is
	     * INFLATED, the sum should also be regarded as an
	     * overflow.  See "Hacker's Delight" section 2-12 for
	     * explanation of the overflow test.
	     */
	    if ( (((sum ^ x) & (sum ^ y)) >> 63) == 0L )	// not overflowed
		return BigDecimal.valueOf(sum, arg[0].scale);
	}
        return new BigDecimal(arg[0].inflate().intVal.add(arg[1].inflate().intVal), arg[0].scale);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this + augend)</tt>,
     * with rounding according to the context settings.
     *
     * If either number is zero and the precision setting is nonzero then
     * the other number, rounded if necessary, is used as the result.
     *
     * @param  augend value to be added to this <tt>BigDecimal</tt>.
     * @param  mc the context to use.
     * @return <tt>this + augend</tt>, rounded as necessary.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @since  1.5
     */
    public BigDecimal add(BigDecimal augend, MathContext mc) {
        if (mc.precision == 0)
            return add(augend);
        BigDecimal lhs = this;

	// Could optimize if values are compact
	this.inflate();
	augend.inflate();
	
        // If either number is zero then the other number, rounded and
        // scaled if necessary, is used as the result.
	{
	    boolean lhsIsZero = lhs.signum() == 0;
	    boolean augendIsZero = augend.signum() == 0;

	    if (lhsIsZero || augendIsZero) {
		int preferredScale = Math.max(lhs.scale(), augend.scale());
		BigDecimal result;

		// Could use a factory for zero instead of a new object
		if (lhsIsZero && augendIsZero)
		    return new BigDecimal(BigInteger.ZERO, 0, preferredScale);


		result = lhsIsZero ? augend.doRound(mc) : lhs.doRound(mc);

		if (result.scale() == preferredScale) 
		    return result;
		else if (result.scale() > preferredScale) 
		    return new BigDecimal(result.intVal, result.intCompact, result.scale).
			stripZerosToMatchScale(preferredScale);
		else { // result.scale < preferredScale
		    int precisionDiff = mc.precision - result.precision();
		    int scaleDiff     = preferredScale - result.scale();

		    if (precisionDiff >= scaleDiff)
			return result.setScale(preferredScale); // can achieve target scale
		    else
			return result.setScale(result.scale() + precisionDiff);
		} 
	    }
	}

        long padding = (long)lhs.scale - augend.scale;
        if (padding != 0) {        // scales differ; alignment needed
            BigDecimal arg[] = preAlign(lhs, augend, padding, mc);
            matchScale(arg);
            lhs    = arg[0];
            augend = arg[1];
        }
	
	return new BigDecimal(lhs.inflate().intVal.add(augend.inflate().intVal),
			      lhs.scale).doRound(mc);
    }

    /**
     * Returns an array of length two, the sum of whose entries is
     * equal to the rounded sum of the {@code BigDecimal} arguments.
     *
     * <p>If the digit positions of the arguments have a sufficient
     * gap between them, the value smaller in magnitude can be
     * condensed into a &quot;sticky bit&quot; and the end result will
     * round the same way <em>if</em> the precision of the final
     * result does not include the high order digit of the small
     * magnitude operand.
     *
     * <p>Note that while strictly speaking this is an optimization,
     * it makes a much wider range of additions practical.
     * 
     * <p>This corresponds to a pre-shift operation in a fixed
     * precision floating-point adder; this method is complicated by
     * variable precision of the result as determined by the
     * MathContext.  A more nuanced operation could implement a
     * &quot;right shift&quot; on the smaller magnitude operand so
     * that the number of digits of the smaller operand could be
     * reduced even though the significands partially overlapped.
     */
    private BigDecimal[] preAlign(BigDecimal lhs, BigDecimal augend,
				  long padding, MathContext mc) {
	assert padding != 0;
	BigDecimal big;
	BigDecimal small;
	
	if (padding < 0) {     // lhs is big;   augend is small
	    big   = lhs;
	    small = augend;
	} else {               // lhs is small; augend is big
	    big   = augend;
	    small = lhs;
	}

	/*
	 * This is the estimated scale of an ulp of the result; it
	 * assumes that the result doesn't have a carry-out on a true
	 * add (e.g. 999 + 1 => 1000) or any subtractive cancellation
	 * on borrowing (e.g. 100 - 1.2 => 98.8)
	 */
	long estResultUlpScale = (long)big.scale - big.precision() + mc.precision;

	/*
	 * The low-order digit position of big is big.scale().  This
	 * is true regardless of whether big has a positive or
	 * negative scale.  The high-order digit position of small is
	 * small.scale - (small.precision() - 1).  To do the full
	 * condensation, the digit positions of big and small must be
	 * disjoint *and* the digit positions of small should not be
	 * directly visible in the result.
	 */
	long smallHighDigitPos = (long)small.scale - small.precision() + 1;
	if (smallHighDigitPos > big.scale + 2 && 	 // big and small disjoint
	    smallHighDigitPos > estResultUlpScale + 2) { // small digits not visible
	    small = BigDecimal.valueOf(small.signum(),
				       this.checkScale(Math.max(big.scale, estResultUlpScale) + 3));
	}
	
	// Since addition is symmetric, preserving input order in
	// returned operands doesn't matter
	BigDecimal[] result = {big, small};
	return result;
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this -
     * subtrahend)</tt>, and whose scale is <tt>max(this.scale(),
     * subtrahend.scale())</tt>.
     *
     * @param  subtrahend value to be subtracted from this <tt>BigDecimal</tt>.
     * @return <tt>this - subtrahend</tt>
     */
    public BigDecimal subtract(BigDecimal subtrahend) {
        BigDecimal arg[] = {this, subtrahend};
        matchScale(arg);

	long x = arg[0].intCompact;
	long y = arg[1].intCompact;

	// Might be able to do a more clever check incorporating the
	// inflated check into the overflow computation.
	if (x != INFLATED && y != INFLATED) {
	    long difference = x - y;
	    /*
	     * If the difference is not an overflowed value, continue
	     * to use the compact representation.  if either of x or y
	     * is INFLATED, the difference should also be regarded as
	     * an overflow.  See "Hacker's Delight" section 2-12 for
	     * explanation of the overflow test.
	     */
	    if ( ((x ^ y) & (difference ^ x) ) >> 63 == 0L )	// not overflowed
		return BigDecimal.valueOf(difference, arg[0].scale);
	}
        return new BigDecimal(arg[0].inflate().intVal.subtract(arg[1].inflate().intVal),
                              arg[0].scale);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this - subtrahend)</tt>,
     * with rounding according to the context settings.
     *
     * If <tt>subtrahend</tt> is zero then this, rounded if necessary, is used as the
     * result.  If this is zero then the result is <tt>subtrahend.negate(mc)</tt>.
     *
     * @param  subtrahend value to be subtracted from this <tt>BigDecimal</tt>.
     * @param  mc the context to use.
     * @return <tt>this - subtrahend</tt>, rounded as necessary.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @since  1.5
     */
    public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) {
        if (mc.precision == 0)
            return subtract(subtrahend);
        // share the special rounding code in add()
	this.inflate();
	subtrahend.inflate();
        BigDecimal rhs = new BigDecimal(subtrahend.intVal.negate(), subtrahend.scale);
        rhs.precision = subtrahend.precision;
        return add(rhs, mc);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this &times;
     * multiplicand)</tt>, and whose scale is <tt>(this.scale() +
     * multiplicand.scale())</tt>.
     *
     * @param  multiplicand value to be multiplied by this <tt>BigDecimal</tt>.
     * @return <tt>this * multiplicand</tt>
     */
    public BigDecimal multiply(BigDecimal multiplicand) {
	long x = this.intCompact;
	long y = multiplicand.intCompact;
	int productScale = checkScale((long)scale+multiplicand.scale);

	// Might be able to do a more clever check incorporating the
	// inflated check into the overflow computation.
	if (x != INFLATED && y != INFLATED) {
	    /*
	     * If the product is not an overflowed value, continue
	     * to use the compact representation.  if either of x or y
	     * is INFLATED, the product should also be regarded as
	     * an overflow.  See "Hacker's Delight" section 2-12 for
	     * explanation of the overflow test.
	     */
	    long product = x * y;
	    if ( !(y != 0L && product/y != x)  )	// not overflowed
		return BigDecimal.valueOf(product, productScale);
	}

        BigDecimal result = new BigDecimal(this.inflate().intVal.multiply(multiplicand.inflate().intVal), productScale);
        return result;
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this &times;
     * multiplicand)</tt>, with rounding according to the context settings.
     *
     * @param  multiplicand value to be multiplied by this <tt>BigDecimal</tt>.
     * @param  mc the context to use.
     * @return <tt>this * multiplicand</tt>, rounded as necessary.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @since  1.5
     */
    public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) {
        if (mc.precision == 0)
            return multiply(multiplicand);
        BigDecimal lhs = this;
        return lhs.inflate().multiply(multiplicand.inflate()).doRound(mc);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
     * divisor)</tt>, and whose scale is as specified.  If rounding must
     * be performed to generate a result with the specified scale, the
     * specified rounding mode is applied.
     * 
     * <p>The new {@link #divide(BigDecimal, int, RoundingMode)} method
     * should be used in preference to this legacy method.
     * 
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided.
     * @param  scale scale of the <tt>BigDecimal</tt> quotient to be returned.
     * @param  roundingMode rounding mode to apply.
     * @return <tt>this / divisor</tt>
     * @throws ArithmeticException if <tt>divisor</tt> is zero,
     *         <tt>roundingMode==ROUND_UNNECESSARY</tt> and
     *         the specified scale is insufficient to represent the result
     *         of the division exactly.
     * @throws IllegalArgumentException if <tt>roundingMode</tt> does not
     *         represent a valid rounding mode.
     * @see    #ROUND_UP
     * @see    #ROUND_DOWN
     * @see    #ROUND_CEILING
     * @see    #ROUND_FLOOR
     * @see    #ROUND_HALF_UP
     * @see    #ROUND_HALF_DOWN
     * @see    #ROUND_HALF_EVEN
     * @see    #ROUND_UNNECESSARY
     */
    public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) {
	/* 
	 * IMPLEMENTATION NOTE: This method *must* return a new object
	 * since dropDigits uses divide to generate a value whose
	 * scale is then modified.
	 */
        if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
            throw new IllegalArgumentException("Invalid rounding mode");
        /*
         * Rescale dividend or divisor (whichever can be "upscaled" to
         * produce correctly scaled quotient).
         * Take care to detect out-of-range scales
         */
        BigDecimal dividend;
        if (checkScale((long)scale + divisor.scale) >= this.scale) {
            dividend = this.setScale(scale + divisor.scale);
        } else {
            dividend = this;
            divisor = divisor.setScale(checkScale((long)this.scale - scale));
        }
	
	boolean compact = dividend.intCompact != INFLATED && divisor.intCompact != INFLATED;
	long div = INFLATED;
	long rem = INFLATED;;
	BigInteger q=null, r=null;

	if (compact) {
	    div = dividend.intCompact / divisor.intCompact;
	    rem = dividend.intCompact % divisor.intCompact;
	} else {
	    // Do the division and return result if it's exact.
	    BigInteger i[] = dividend.inflate().intVal.divideAndRemainder(divisor.inflate().intVal);
	    q = i[0];
	    r = i[1];
	}

	// Check for exact result
	if (compact) {
	    if (rem == 0)
		return new BigDecimal(div, scale);
	} else {
	    if (r.signum() == 0)
		return new BigDecimal(q, scale);
	}
	
        if (roundingMode == ROUND_UNNECESSARY)      // Rounding prohibited
            throw new ArithmeticException("Rounding necessary");

        /* Round as appropriate */
        int signum = dividend.signum() * divisor.signum(); // Sign of result
        boolean increment;
        if (roundingMode == ROUND_UP) {             // Away from zero
            increment = true;
        } else if (roundingMode == ROUND_DOWN) {    // Towards zero
            increment = false;
        } else if (roundingMode == ROUND_CEILING) { // Towards +infinity
            increment = (signum > 0);
        } else if (roundingMode == ROUND_FLOOR) {   // Towards -infinity
            increment = (signum < 0);
        } else { // Remaining modes based on nearest-neighbor determination
            int cmpFracHalf;
	    if (compact) {
		 cmpFracHalf = longCompareTo(Math.abs(2*rem), Math.abs(divisor.intCompact));
	    } else {
		// add(r) here is faster than multiply(2) or shiftLeft(1)
		cmpFracHalf= r.add(r).abs().compareTo(divisor.intVal.abs()); 
	    }
            if (cmpFracHalf < 0) {         // We're closer to higher digit
                increment = false;
            } else if (cmpFracHalf > 0) {  // We're closer to lower digit
                increment = true;
            } else {                       // We're dead-center
                if (roundingMode == ROUND_HALF_UP)
                    increment = true;
                else if (roundingMode == ROUND_HALF_DOWN)
                    increment = false;
                else { // roundingMode == ROUND_HALF_EVEN
		    if (compact) 
			increment = (div & 1L) != 0L;
		    else
			increment = q.testBit(0);   // true iff q is odd
		}
            }
	}

	if (compact) {
	    if (increment)
		div += signum; // guaranteed not to overflow
	    return new BigDecimal(div, scale);
	} else {
	    return (increment
		    ? new BigDecimal(q.add(BigInteger.valueOf(signum)), scale)
		    : new BigDecimal(q, scale));
	}
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
     * divisor)</tt>, and whose scale is as specified.  If rounding must
     * be performed to generate a result with the specified scale, the
     * specified rounding mode is applied.
     * 
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided.
     * @param  scale scale of the <tt>BigDecimal</tt> quotient to be returned.
     * @param  roundingMode rounding mode to apply.
     * @return <tt>this / divisor</tt>
     * @throws ArithmeticException if <tt>divisor</tt> is zero,
     *         <tt>roundingMode==RoundingMode.UNNECESSARY</tt> and
     *         the specified scale is insufficient to represent the result
     *         of the division exactly.
     * @since 1.5
     */
    public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
	return divide(divisor, scale, roundingMode.oldMode);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
     * divisor)</tt>, and whose scale is <tt>this.scale()</tt>.  If
     * rounding must be performed to generate a result with the given
     * scale, the specified rounding mode is applied.
     * 
     * <p>The new {@link #divide(BigDecimal, RoundingMode)} method
     * should be used in preference to this legacy method.
     * 
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided.
     * @param  roundingMode rounding mode to apply.
     * @return <tt>this / divisor</tt>
     * @throws ArithmeticException if <tt>divisor==0</tt>, or
     *         <tt>roundingMode==ROUND_UNNECESSARY</tt> and
     *         <tt>this.scale()</tt> is insufficient to represent the result
     *         of the division exactly.
     * @throws IllegalArgumentException if <tt>roundingMode</tt> does not
     *         represent a valid rounding mode.
     * @see    #ROUND_UP
     * @see    #ROUND_DOWN
     * @see    #ROUND_CEILING
     * @see    #ROUND_FLOOR
     * @see    #ROUND_HALF_UP
     * @see    #ROUND_HALF_DOWN
     * @see    #ROUND_HALF_EVEN
     * @see    #ROUND_UNNECESSARY
     */
    public BigDecimal divide(BigDecimal divisor, int roundingMode) {
            return this.divide(divisor, scale, roundingMode);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
     * divisor)</tt>, and whose scale is <tt>this.scale()</tt>.  If
     * rounding must be performed to generate a result with the given
     * scale, the specified rounding mode is applied.
     * 
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided.
     * @param  roundingMode rounding mode to apply.
     * @return <tt>this / divisor</tt>
     * @throws ArithmeticException if <tt>divisor==0</tt>, or
     *         <tt>roundingMode==RoundingMode.UNNECESSARY</tt> and
     *         <tt>this.scale()</tt> is insufficient to represent the result
     *         of the division exactly.
     * @since 1.5
     */
    public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode) {
	return this.divide(divisor, scale, roundingMode.oldMode);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
     * divisor)</tt>, and whose preferred scale is <tt>(this.scale() -
     * divisor.scale())</tt>; if the exact quotient cannot be
     * represented (because it has a non-terminating decimal
     * expansion) an <tt>ArithmeticException</tt> is thrown.
     *
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided.
     * @throws ArithmeticException if the exact quotient does not have a
     *         terminating decimal expansion
     * @return <tt>this / divisor</tt>
     * @since 1.5
     * @author Joseph D. Darcy
     */
    public BigDecimal divide(BigDecimal divisor) {
	/*
	 * Handle zero cases first.
	 */
        if (divisor.signum() == 0) {   // x/0
            if (this.signum() == 0)    // 0/0
                throw new ArithmeticException("Division undefined");  // NaN
            throw new ArithmeticException("Division by zero");
	}

	// Calculate preferred scale
	int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(),
						    Integer.MAX_VALUE), Integer.MIN_VALUE);
        if (this.signum() == 0)        // 0/y
            return new BigDecimal(0, preferredScale);
	else {
	    this.inflate();
	    divisor.inflate();
	    /*
	     * If the quotient this/divisor has a terminating decimal
	     * expansion, the expansion can have no more than
	     * (a.precision() + ceil(10*b.precision)/3) digits.
	     * Therefore, create a MathContext object with this
	     * precision and do a divide with the UNNECESSARY rounding
	     * mode.
	     */
	    MathContext mc = new MathContext( (int)Math.min(this.precision() + 
							    (long)Math.ceil(10.0*divisor.precision()/3.0),
							    Integer.MAX_VALUE),
					      RoundingMode.UNNECESSARY);
	    BigDecimal quotient;
	    try {
		quotient = this.divide(divisor, mc);
	    } catch (ArithmeticException e) {
		throw new ArithmeticException("Non-terminating decimal expansion; " + 
					      "no exact representable decimal result.");
	    }

	    int quotientScale = quotient.scale();

	    // divide(BigDecimal, mc) tries to adjust the quotient to
	    // the desired one by removing trailing zeros; since the
	    // exact divide method does not have an explicit digit
	    // limit, we can add zeros too.
	    
	    if (preferredScale > quotientScale)
		return quotient.setScale(preferredScale);

	    return quotient;
	}
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
     * divisor)</tt>, with rounding according to the context settings.
     *
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided.
     * @param  mc the context to use.
     * @return <tt>this / divisor</tt>, rounded as necessary.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt> or 
     *         <tt>mc.precision == 0</tt> and the quotient has a 
     *         non-terminating decimal expansion.
     * @since  1.5
     */
    public BigDecimal divide(BigDecimal divisor, MathContext mc) {
        if (mc.precision == 0)
            return divide(divisor);
        BigDecimal lhs = this.inflate();     // left-hand-side
        BigDecimal rhs = divisor.inflate();  // right-hand-side
        BigDecimal result;                   // work

	long preferredScale = (long)lhs.scale() - rhs.scale();

        // Now calculate the answer.  We use the existing
        // divide-and-round method, but as this rounds to scale we have
        // to normalize the values here to achieve the desired result.
        // For x/y we first handle y=0 and x=0, and then normalize x and
        // y to give x' and y' with the following constraints:
        //   (a) 0.1 <= x' < 1
        //   (b)  x' <= y' < 10*x'
        // Dividing x'/y' with the required scale set to mc.precision then
        // will give a result in the range 0.1 to 1 rounded to exactly
        // the right number of digits (except in the case of a result of
        // 1.000... which can arise when x=y, or when rounding overflows
        // The 1.000... case will reduce properly to 1.
        if (rhs.signum() == 0) {      // x/0
            if (lhs.signum() == 0)    // 0/0
                throw new ArithmeticException("Division undefined");  // NaN
            throw new ArithmeticException("Division by zero");
	}
        if (lhs.signum() == 0)        // 0/y
            return new BigDecimal(BigInteger.ZERO, 
				  (int)Math.max(Math.min(preferredScale,
							 Integer.MAX_VALUE),
						Integer.MIN_VALUE));

        BigDecimal xprime = new BigDecimal(lhs.intVal.abs(), lhs.precision());
        BigDecimal yprime = new BigDecimal(rhs.intVal.abs(), rhs.precision());
        // xprime and yprime are now both in range 0.1 through 0.999...
	if (mc.roundingMode == RoundingMode.CEILING || 
	    mc.roundingMode == RoundingMode.FLOOR) {
	    // The floor (round toward negative infinity) and ceil
	    // (round toward positive infinity) rounding modes are not
	    // invariant under a sign flip.  If xprime/yprime has a
	    // different sign than lhs/rhs, the rounding mode must be
	    // changed.
	    if ((xprime.signum() != lhs.signum()) ^
		(yprime.signum() != rhs.signum())) {
		mc = new MathContext(mc.precision, 
				     (mc.roundingMode==RoundingMode.CEILING)?
				     RoundingMode.FLOOR:RoundingMode.CEILING);
	    }
	}

        if (xprime.compareTo(yprime) > 0)    // satisfy constraint (b)
          yprime.scale -= 1;                 // [that is, yprime *= 10]
        result = xprime.divide(yprime, mc.precision, mc.roundingMode.oldMode);
        // correct the scale of the result...
        result.scale = checkScale((long)yprime.scale - xprime.scale
            - (rhs.scale - lhs.scale) + mc.precision);
        // apply the sign
        if (lhs.signum() != rhs.signum())
            result = result.negate();
        // doRound, here, only affects 1000000000 case.
        result = result.doRound(mc);
	    
	if (result.multiply(divisor).compareTo(this) == 0) {
	    // Apply preferred scale rules for exact quotients
	    return result.stripZerosToMatchScale(preferredScale);
	}
	else {
	    return result;
	}
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is the integer part
     * of the quotient <tt>(this / divisor)</tt> rounded down.  The
     * preferred scale of the result is <code>(this.scale() -
     * divisor.scale())</code>.
     *
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided.
     * @return The integer part of <tt>this / divisor</tt>.
     * @throws ArithmeticException if <tt>divisor==0</tt>
     * @since  1.5
     */
    public BigDecimal divideToIntegralValue(BigDecimal divisor) {
	// Calculate preferred scale
	int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(),
						    Integer.MAX_VALUE), Integer.MIN_VALUE);
	this.inflate();
	divisor.inflate();
        if (this.abs().compareTo(divisor.abs()) < 0) {
	    // much faster when this << divisor
            return BigDecimal.valueOf(0, preferredScale);
        }

	if(this.signum() == 0 && divisor.signum() != 0)
	    return this.setScale(preferredScale);

	// Perform a divide with enough digits to round to a correct
	// integer value; then remove any fractional digits

	int maxDigits = (int)Math.min(this.precision() +
				      (long)Math.ceil(10.0*divisor.precision()/3.0) +
				      Math.abs((long)this.scale() - divisor.scale()) + 2,
				      Integer.MAX_VALUE);

        BigDecimal quotient = this.divide(divisor, new MathContext(maxDigits,
								   RoundingMode.DOWN));
	if (quotient.scale > 0) {
	    quotient = quotient.setScale(0, RoundingMode.DOWN).
		stripZerosToMatchScale(preferredScale);
	}
	
	if (quotient.scale < preferredScale) {
	    // pad with zeros if necessary
	    quotient = quotient.setScale(preferredScale);
	}

	return quotient;
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is the integer part
     * of <tt>(this / divisor)</tt>.  Since the integer part of the
     * exact quotient does not depend on the rounding mode, the
     * rounding mode does not affect the values returned by this
     * method.  The preferred scale of the result is
     * <code>(this.scale() - divisor.scale())</code>.  An
     * <tt>ArithmeticException</tt> is thrown if the integer part of
     * the exact quotient needs more than <tt>mc.precision</tt>
     * digits.
     *
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided.
     * @param  mc the context to use.
     * @return The integer part of <tt>this / divisor</tt>.
     * @throws ArithmeticException if <tt>divisor==0</tt>
     * @throws ArithmeticException if <tt>mc.precision</tt> &gt; 0 and the result
     *         requires a precision of more than <tt>mc.precision</tt> digits.
     * @since  1.5
     * @author Joseph D. Darcy
     */
    public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) {
        if (mc.precision == 0 || 			// exact result
	    (this.abs().compareTo(divisor.abs()) < 0) )	// zero result
            return divideToIntegralValue(divisor);
	
	// Calculate preferred scale
	int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(),
						    Integer.MAX_VALUE), Integer.MIN_VALUE);
	
	/*
	 * Perform a normal divide to mc.precision digits.  If the
	 * remainder has absolute value less than the divisor, the
	 * integer portion of the quotient fits into mc.precision
	 * digits.  Next, remove any fractional digits from the
	 * quotient and adjust the scale to the preferred value.
	 */
	BigDecimal result = this.divide(divisor, new MathContext(mc.precision, 
								 RoundingMode.DOWN));
	int resultScale = result.scale();
	
	if (result.scale() < 0) {
	    /*
	     * Result is an integer. See if quotient represents the
	     * full integer portion of the exact quotient; if it does,
	     * the computed remainder will be less than the divisor.
	     */
	    BigDecimal product = result.multiply(divisor);
	    // If the quotient is the full integer value,
	    // |dividend-product| < |divisor|.
	    if (this.subtract(product).abs().compareTo(divisor.abs()) >= 0) {
		throw new ArithmeticException("Division impossible");
	    }
	} else if (result.scale() > 0) { 
	    /*
	     * Integer portion of quotient will fit into precision
	     * digits; recompute quotient to scale 0 to avoid double
	     * rounding and then try to adjust, if necessary.
	     */
	    result = result.setScale(0, RoundingMode.DOWN);
	}
	// else result.scale() == 0; 

	int precisionDiff;
	if ((preferredScale > result.scale()) && 
	    (precisionDiff = mc.precision - result.precision()) > 0  ) {
	    return result.setScale(result.scale() + 
				   Math.min(precisionDiff, preferredScale - result.scale) );
	} else
	    return result.stripZerosToMatchScale(preferredScale);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this % divisor)</tt>.
     * 
     * <p>The remainder is given by
     * <tt>this.subtract(this.divideToIntegralValue(divisor).multiply(divisor))</tt>.
     * Note that this is not the modulo operation (the result can be
     * negative).
     *
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided.
     * @return <tt>this % divisor</tt>.
     * @throws ArithmeticException if <tt>divisor==0</tt>
     * @since  1.5
     */
    public BigDecimal remainder(BigDecimal divisor) {
        BigDecimal divrem[] = this.divideAndRemainder(divisor);
        return divrem[1];
    }


    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(this %
     * divisor)</tt>, with rounding according to the context settings.
     * The <tt>MathContext</tt> settings affect the implicit divide
     * used to compute the remainder.  The remainder computation
     * itself is by definition exact.  Therefore, the remainder may
     * contain more than <tt>mc.getPrecision()</tt> digits.
     * 
     * <p>The remainder is given by
     * <tt>this.subtract(this.divideToIntegralValue(divisor,
     * mc).multiply(divisor))</tt>.  Note that this is not the modulo
     * operation (the result can be negative).
     *
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided.
     * @param  mc the context to use.
     * @return <tt>this % divisor</tt>, rounded as necessary.
     * @throws ArithmeticException if <tt>divisor==0</tt>
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>, or <tt>mc.precision</tt> 
     *         &gt; 0 and the result of <tt>this.divideToIntgralValue(divisor)</tt> would 
     *         require a precision of more than <tt>mc.precision</tt> digits.
     * @see    #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
     * @since  1.5
     */
    public BigDecimal remainder(BigDecimal divisor, MathContext mc) {
        BigDecimal divrem[] = this.divideAndRemainder(divisor, mc);
        return divrem[1];
    }

    /**
     * Returns a two-element <tt>BigDecimal</tt> array containing the
     * result of <tt>divideToIntegralValue</tt> followed by the result of
     * <tt>remainder</tt> on the two operands.
     * 
     * <p>Note that if both the integer quotient and remainder are
     * needed, this method is faster than using the
     * <tt>divideToIntegralValue</tt> and <tt>remainder</tt> methods
     * separately because the division need only be carried out once.
     *
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided, 
     *         and the remainder computed.
     * @return a two element <tt>BigDecimal</tt> array: the quotient 
     *         (the result of <tt>divideToIntegralValue</tt>) is the initial element 
     *         and the remainder is the final element.
     * @throws ArithmeticException if <tt>divisor==0</tt>
     * @see    #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
     * @see    #remainder(java.math.BigDecimal, java.math.MathContext)
     * @since  1.5
     */
    public BigDecimal[] divideAndRemainder(BigDecimal divisor) {
        // we use the identity  x = i * y + r to determine r
        BigDecimal[] result = new BigDecimal[2];

        result[0] = this.divideToIntegralValue(divisor);
	result[1] = this.subtract(result[0].multiply(divisor));
        return result;
    }

    /**
     * Returns a two-element <tt>BigDecimal</tt> array containing the
     * result of <tt>divideToIntegralValue</tt> followed by the result of
     * <tt>remainder</tt> on the two operands calculated with rounding
     * according to the context settings.
     * 
     * <p>Note that if both the integer quotient and remainder are
     * needed, this method is faster than using the
     * <tt>divideToIntegralValue</tt> and <tt>remainder</tt> methods
     * separately because the division need only be carried out once.
     *
     * @param  divisor value by which this <tt>BigDecimal</tt> is to be divided, 
     *         and the remainder computed.
     * @param  mc the context to use.
     * @return a two element <tt>BigDecimal</tt> array: the quotient 
     *         (the result of <tt>divideToIntegralValue</tt>) is the 
     *         initial element and the remainder is the final element.
     * @throws ArithmeticException if <tt>divisor==0</tt>
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>, or <tt>mc.precision</tt> 
     *         &gt; 0 and the result of <tt>this.divideToIntgralValue(divisor)</tt> would 
     *         require a precision of more than <tt>mc.precision</tt> digits.
     * @see    #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
     * @see    #remainder(java.math.BigDecimal, java.math.MathContext)
     * @since  1.5
     */
    public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc) {
        if (mc.precision == 0)
            return divideAndRemainder(divisor);

        BigDecimal[] result = new BigDecimal[2];
        BigDecimal lhs = this;

        result[0] = lhs.divideToIntegralValue(divisor, mc);
	result[1] = lhs.subtract(result[0].multiply(divisor));
        return result;
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is
     * <tt>(this<sup>n</sup>)</tt>, The power is computed exactly, to
     * unlimited precision.
     * 
     * <p>The parameter <tt>n</tt> must be in the range 0 through
     * 999999999, inclusive.  <tt>ZERO.pow(0)</tt> returns {@link
     * #ONE}.
     *
     * Note that future releases may expand the allowable exponent
     * range of this method.
     *
     * @param  n power to raise this <tt>BigDecimal</tt> to.
     * @return <tt>this<sup>n</sup></tt>
     * @throws ArithmeticException if <tt>n</tt> is out of range.
     * @since  1.5
     */
    public BigDecimal pow(int n) {
        if (n < 0 || n > 999999999)
            throw new ArithmeticException("Invalid operation");
	// No need to calculate pow(n) if result will over/underflow.
	// Don't attempt to support "supernormal" numbers.
	int newScale = checkScale((long)scale * n);
	this.inflate();
        return new BigDecimal(intVal.pow(n), newScale);
    }


    /**
     * Returns a <tt>BigDecimal</tt> whose value is
     * <tt>(this<sup>n</sup>)</tt>.  The current implementation uses
     * the core algorithm defined in ANSI standard X3.274-1996 with
     * rounding according to the context settings.  In general, the
     * returned numerical value is within two ulps of the exact
     * numerical value for the chosen precision.  Note that future
     * releases may use a different algorithm with a decreased
     * allowable error bound and increased allowable exponent range.
     *
     * <p>The X3.274-1996 algorithm is:
     *
     * <ul>
     * <li> An <tt>ArithmeticException</tt> exception is thrown if
     *  <ul>
     *    <li><tt>abs(n) &gt; 999999999</tt>
     *    <li><tt>mc.precision == 0</tt> and <tt>n &lt; 0</tt>
     *    <li><tt>mc.precision &gt; 0</tt> and <tt>n</tt> has more than
     *    <tt>mc.precision</tt> decimal digits
     *  </ul>
     *
     * <li> if <tt>n</tt> is zero, {@link #ONE} is returned even if
     * <tt>this</tt> is zero, otherwise
     * <ul>
     *   <li> if <tt>n</tt> is positive, the result is calculated via
     *   the repeated squaring technique into a single accumulator.
     *   The individual multiplications with the accumulator use the
     *   same math context settings as in <tt>mc</tt> except for a
     *   precision increased to <tt>mc.precision + elength + 1</tt>
     *   where <tt>elength</tt> is the number of decimal digits in
     *   <tt>n</tt>.
     *
     *   <li> if <tt>n</tt> is negative, the result is calculated as if
     *   <tt>n</tt> were positive; this value is then divided into one
     *   using the working precision specified above.
     *
     *   <li> The final value from either the positive or negative case
     *   is then rounded to the destination precision.
     *   </ul>
     * </ul>
     *
     * @param  n power to raise this <tt>BigDecimal</tt> to.
     * @param  mc the context to use.
     * @return <tt>this<sup>n</sup></tt> using the ANSI standard X3.274-1996
     *         algorithm
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>, or <tt>n</tt> is out 
     *         of range.
     * @since  1.5
     */
    public BigDecimal pow(int n, MathContext mc) {
        if (mc.precision == 0)
            return pow(n);
        if (n < -999999999 || n > 999999999)
            throw new ArithmeticException("Invalid operation");
        if (n == 0)
            return ONE;                      // x**0 == 1 in X3.274
	this.inflate();
        BigDecimal lhs = this;
        MathContext workmc = mc;           // working settings
        int mag = Math.abs(n);               // magnitude of n
        if (mc.precision > 0) {

            int elength = intLength(mag);    // length of n in digits
            if (elength > mc.precision)        // X3.274 rule
                throw new ArithmeticException("Invalid operation");
            workmc = new MathContext(mc.precision + elength + 1,
				      mc.roundingMode);
        }
        // ready to carry out power calculation...
        BigDecimal acc = ONE;           // accumulator
        boolean seenbit = false;        // set once we've seen a 1-bit
        for (int i=1;;i++) {            // for each bit [top bit ignored]
            mag += mag;                 // shift left 1 bit
            if (mag < 0) {              // top bit is set
                seenbit = true;         // OK, we're off
                acc = acc.multiply(lhs, workmc); // acc=acc*x
            }
            if (i == 31)
                break;                  // that was the last bit
            if (seenbit)
                acc=acc.multiply(acc, workmc);   // acc=acc*acc [square]
                // else (!seenbit) no point in squaring ONE
        }
        // if negative n, calculate the reciprocal using working precision
        if (n<0)                          // [hence mc.precision>0]
            acc=ONE.divide(acc, workmc);
        // round to final precision and strip zeros
        return acc.doRound(mc);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is the absolute value
     * of this <tt>BigDecimal</tt>, and whose scale is
     * <tt>this.scale()</tt>.
     *
     * @return <tt>abs(this)</tt>
     */
    public BigDecimal abs() {
        return (signum() < 0 ? negate() : this);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is the absolute value
     * of this <tt>BigDecimal</tt>, with rounding according to the
     * context settings.
     *
     * @param mc the context to use.
     * @return <tt>abs(this)</tt>, rounded as necessary.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @since 1.5
     */
    public BigDecimal abs(MathContext mc) {
        return (signum() < 0 ? negate(mc) : plus(mc));
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(-this)</tt>,
     * and whose scale is <tt>this.scale()</tt>.
     *
     * @return <tt>-this</tt>.
     */
    public BigDecimal negate() {
	BigDecimal result;
	if (intCompact != INFLATED)
	    result = BigDecimal.valueOf(-intCompact, scale);
	else {
	    result = new BigDecimal(intVal.negate(), scale);
	    result.precision = precision;
	}
        return result;
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(-this)</tt>,
     * with rounding according to the context settings.
     *
     * @param mc the context to use.
     * @return <tt>-this</tt>, rounded as necessary.
     * @throws ArithmeticException if the result is inexact but the 
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @since  1.5
     */
    public BigDecimal negate(MathContext mc) {
        return negate().plus(mc);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(+this)</tt>, and whose
     * scale is <tt>this.scale()</tt>.
     * 
     * <p>This method, which simply returns this <tt>BigDecimal</tt>
     * is included for symmetry with the unary minus method {@link
     * #negate()}.
     * 
     * @return <tt>this</tt>.
     * @see #negate()
     * @since  1.5
     */
    public BigDecimal plus() {
        return this;
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose value is <tt>(+this)</tt>,
     * with rounding according to the context settings.
     * 
     * <p>The effect of this method is identical to that of the {@link
     * #round(MathContext)} method.
     *
     * @param mc the context to use.
     * @return <tt>this</tt>, rounded as necessary.  A zero result will
     *         have a scale of 0.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     * @see    #round(MathContext)
     * @since  1.5
     */
    public BigDecimal plus(MathContext mc) {
        if (mc.precision == 0)                 // no rounding please
            return this;
        return this.doRound(mc);
    }

    /**
     * Returns the signum function of this <tt>BigDecimal</tt>.
     *
     * @return -1, 0, or 1 as the value of this <tt>BigDecimal</tt> 
     *         is negative, zero, or positive.
     */
    public int signum() {
	return (intCompact != INFLATED)?
	    Long.signum(intCompact):
	    intVal.signum();
    }

    /**
     * Returns the <i>scale</i> of this <tt>BigDecimal</tt>.  If zero
     * or positive, the scale is the number of digits to the right of
     * the decimal point.  If negative, the unscaled value of the
     * number is multiplied by ten to the power of the negation of the
     * scale.  For example, a scale of <tt>-3</tt> means the unscaled
     * value is multiplied by 1000.
     *
     * @return the scale of this <tt>BigDecimal</tt>.
     */
    public int scale() {
        return scale;
    }

    /**
     * Returns the <i>precision</i> of this <tt>BigDecimal</tt>.  (The
     * precision is the number of digits in the unscaled value.)
     *
     * <p>The precision of a zero value is 1.
     *
     * @return the precision of this <tt>BigDecimal</tt>.
     * @since  1.5
     */
    public int precision() {
        int result = precision;
        if (result == 0) {
            result = digitLength();
            precision = result;
        }
        return result;
    }


    /**
     * Returns a <tt>BigInteger</tt> whose value is the <i>unscaled
     * value</i> of this <tt>BigDecimal</tt>.  (Computes <tt>(this *
     * 10<sup>this.scale()</sup>)</tt>.)
     *
     * @return the unscaled value of this <tt>BigDecimal</tt>.
     * @since  1.2
     */
    public BigInteger unscaledValue() {
        return this.inflate().intVal;
    }

    // Rounding Modes

    /**
     * Rounding mode to round away from zero.  Always increments the
     * digit prior to a nonzero discarded fraction.  Note that this rounding
     * mode never decreases the magnitude of the calculated value.
     */
    public final static int ROUND_UP =           0;

    /**
     * Rounding mode to round towards zero.  Never increments the digit
     * prior to a discarded fraction (i.e., truncates).  Note that this
     * rounding mode never increases the magnitude of the calculated value.
     */
    public final static int ROUND_DOWN =         1;

    /**
     * Rounding mode to round towards positive infinity.  If the
     * <tt>BigDecimal</tt> is positive, behaves as for
     * <tt>ROUND_UP</tt>; if negative, behaves as for
     * <tt>ROUND_DOWN</tt>.  Note that this rounding mode never
     * decreases the calculated value.
     */
    public final static int ROUND_CEILING =      2;

    /**
     * Rounding mode to round towards negative infinity.  If the
     * <tt>BigDecimal</tt> is positive, behave as for
     * <tt>ROUND_DOWN</tt>; if negative, behave as for
     * <tt>ROUND_UP</tt>.  Note that this rounding mode never
     * increases the calculated value.
     */
    public final static int ROUND_FLOOR =        3;

    /**
     * Rounding mode to round towards &quot;nearest neighbor&quot;
     * unless both neighbors are equidistant, in which case round up.
     * Behaves as for <tt>ROUND_UP</tt> if the discarded fraction is
     * &gt;= 0.5; otherwise, behaves as for <tt>ROUND_DOWN</tt>.  Note
     * that this is the rounding mode that most of us were taught in
     * grade school.
     */
    public final static int ROUND_HALF_UP =      4;

    /**
     * Rounding mode to round towards &quot;nearest neighbor&quot;
     * unless both neighbors are equidistant, in which case round
     * down.  Behaves as for <tt>ROUND_UP</tt> if the discarded
     * fraction is &gt; 0.5; otherwise, behaves as for
     * <tt>ROUND_DOWN</tt>.
     */
    public final static int ROUND_HALF_DOWN =    5;

    /**
     * Rounding mode to round towards the &quot;nearest neighbor&quot;
     * unless both neighbors are equidistant, in which case, round
     * towards the even neighbor.  Behaves as for
     * <tt>ROUND_HALF_UP</tt> if the digit to the left of the
     * discarded fraction is odd; behaves as for
     * <tt>ROUND_HALF_DOWN</tt> if it's even.  Note that this is the
     * rounding mode that minimizes cumulative error when applied
     * repeatedly over a sequence of calculations.
     */
    public final static int ROUND_HALF_EVEN =    6;

    /**
     * Rounding mode to assert that the requested operation has an exact
     * result, hence no rounding is necessary.  If this rounding mode is
     * specified on an operation that yields an inexact result, an
     * <tt>ArithmeticException</tt> is thrown.
     */
    public final static int ROUND_UNNECESSARY =  7;


    // Scaling/Rounding Operations

    /**
     * Returns a <tt>BigDecimal</tt> rounded according to the
     * <tt>MathContext</tt> settings.  If the precision setting is 0 then
     * no rounding takes place.
     * 
     * <p>The effect of this method is identical to that of the
     * {@link #plus(MathContext)} method.
     *
     * @param mc the context to use.
     * @return a <tt>BigDecimal</tt> rounded according to the 
     *         <tt>MathContext</tt> settings.
     * @throws ArithmeticException if the rounding mode is
     *         <tt>UNNECESSARY</tt> and the
     *         <tt>BigDecimal</tt>  operation would require rounding.
     * @see    #plus(MathContext)
     * @since  1.5
     */
    public BigDecimal round(MathContext mc) {
        return plus(mc);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose scale is the specified
     * value, and whose unscaled value is determined by multiplying or
     * dividing this <tt>BigDecimal</tt>'s unscaled value by the
     * appropriate power of ten to maintain its overall value.  If the
     * scale is reduced by the operation, the unscaled value must be
     * divided (rather than multiplied), and the value may be changed;
     * in this case, the specified rounding mode is applied to the
     * division.
     *
     * @param  newScale scale of the <tt>BigDecimal</tt> value to be returned.
     * @param  roundingMode The rounding mode to apply.
     * @return a <tt>BigDecimal</tt> whose scale is the specified value, 
     *         and whose unscaled value is determined by multiplying or 
     *         dividing this <tt>BigDecimal</tt>'s unscaled value by the 
     *         appropriate power of ten to maintain its overall value.
     * @throws ArithmeticException if <tt>roundingMode==UNNECESSARY</tt>
     *         and the specified scaling operation would require
     *         rounding.
     * @see    RoundingMode
     * @since  1.5
     */
    public BigDecimal setScale(int newScale, RoundingMode roundingMode) {
        return setScale(newScale, roundingMode.oldMode);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose scale is the specified
     * value, and whose unscaled value is determined by multiplying or
     * dividing this <tt>BigDecimal</tt>'s unscaled value by the
     * appropriate power of ten to maintain its overall value.  If the
     * scale is reduced by the operation, the unscaled value must be
     * divided (rather than multiplied), and the value may be changed;
     * in this case, the specified rounding mode is applied to the
     * division.
     * 
     * <p>Note that since BigDecimal objects are immutable, calls of
     * this method do <i>not</i> result in the original object being
     * modified, contrary to the usual convention of having methods
     * named <tt>set<i>X</i></tt> mutate field <tt><i>X</i></tt>.
     * Instead, <tt>setScale</tt> returns an object with the proper
     * scale; the returned object may or may not be newly allocated.
     * 
     * <p>The new {@link #setScale(int, RoundingMode)} method should
     * be used in preference to this legacy method.
     * 
     * @param  newScale scale of the <tt>BigDecimal</tt> value to be returned.
     * @param  roundingMode The rounding mode to apply.
     * @return a <tt>BigDecimal</tt> whose scale is the specified value, 
     *         and whose unscaled value is determined by multiplying or 
     *         dividing this <tt>BigDecimal</tt>'s unscaled value by the 
     *         appropriate power of ten to maintain its overall value.
     * @throws ArithmeticException if <tt>roundingMode==ROUND_UNNECESSARY</tt>
     *         and the specified scaling operation would require
     *         rounding.
     * @throws IllegalArgumentException if <tt>roundingMode</tt> does not
     *         represent a valid rounding mode.
     * @see    #ROUND_UP
     * @see    #ROUND_DOWN
     * @see    #ROUND_CEILING
     * @see    #ROUND_FLOOR
     * @see    #ROUND_HALF_UP
     * @see    #ROUND_HALF_DOWN
     * @see    #ROUND_HALF_EVEN
     * @see    #ROUND_UNNECESSARY
     */
    public BigDecimal setScale(int newScale, int roundingMode) {
        if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
            throw new IllegalArgumentException("Invalid rounding mode");

        if (newScale == this.scale)        // easy case
            return this;
	if (this.signum() == 0) 	   // zero can have any scale
	    return BigDecimal.valueOf(0, newScale);
        if (newScale > this.scale) {
            // [we can use checkScale to assure multiplier is valid]
            int raise = checkScale((long)newScale - this.scale);

   	    if (intCompact != INFLATED) {
   		long scaledResult = longTenToThe(intCompact, raise);
   		if (scaledResult != INFLATED)
   		    return BigDecimal.valueOf(scaledResult, newScale);
		this.inflate();
  	    }

            BigDecimal result = new BigDecimal(intVal.multiply(tenToThe(raise)),
					       newScale);
            if (this.precision > 0)
                result.precision = this.precision + newScale - this.scale;
            return result;
        }
        // scale < this.scale
        // we cannot perfectly predict the precision after rounding
        return divide(ONE, newScale, roundingMode);
    }

    /**
     * Returns a <tt>BigDecimal</tt> whose scale is the specified
     * value, and whose value is numerically equal to this
     * <tt>BigDecimal</tt>'s.  Throws an <tt>ArithmeticException</tt>
     * if this is not possible.
     * 
     * <p>This call is typically used to increase the scale, in which
     * case it is guaranteed that there exists a <tt>BigDecimal</tt>
     * of the specified scale and the correct value.  The call can
     * also be used to reduce the scale if the caller knows that the
     * <tt>BigDecimal</tt> has sufficiently many zeros at the end of
     * its fractional part (i.e., factors of ten in its integer value)
     * to allow for the rescaling without changing its value.
     * 
     * <p>This method returns the same result as the two-argument
     * versions of <tt>setScale</tt>, but saves the caller the trouble
     * of specifying a rounding mode in cases where it is irrelevant.
     * 
     * <p>Note that since <tt>BigDecimal</tt> objects are immutable,
     * calls of this method do <i>not</i> result in the original
     * object being modified, contrary to the usual convention of
     * having methods named <tt>set<i>X</i></tt> mutate field
     * <tt><i>X</i></tt>.  Instead, <tt>setScale</tt> returns an
     * object with the proper scale; the returned object may or may
     * not be newly allocated.
     *
     * @param  newScale scale of the <tt>BigDecimal</tt> value to be returned.
     * @return a <tt>BigDecimal</tt> whose scale is the specified value, and 
     *         whose unscaled value is determined by multiplying or dividing 
     *         this <tt>BigDecimal</tt>'s unscaled value by the appropriate 
     *         power of ten to maintain its overall value.
     * @throws ArithmeticException if the specified scaling operation would
     *         require rounding.
     * @see    #setScale(int, int)
     * @see    #setScale(int, RoundingMode)
     */
    public BigDecimal setScale(int newScale) {
        return setScale(newScale, ROUND_UNNECESSARY);
    }

    // Decimal Point Motion Operations

    /**
     * Returns a <tt>BigDecimal</tt> which is equivalent to this one
     * with the decimal point moved <tt>n</tt> places to the left.  If
     * <tt>n</tt> is non-negative, the call merely adds <tt>n</tt> to
     * the scale.  If <tt>n</tt> is negative, the call is equivalent
     * to <tt>movePointRight(-n)</tt>.  The <tt>BigDecimal</tt>
     * returned by this call has value <tt>(this &times;
     * 10<sup>-n</sup>)</tt> and scale <tt>max(this.scale()+n,
     * 0)</tt>.
     *
     * @param  n number of places to move the decimal point to the left.
     * @return a <tt>BigDecimal</tt> which is equivalent to this one with the 
     *         decimal point moved <tt>n</tt> places to the left.
     * @throws ArithmeticException if scale overflows.
     */
    public BigDecimal movePointLeft(int n) {
        // Cannot use movePointRight(-n) in case of n==Integer.MIN_VALUE
	int newScale = checkScale((long)scale + n);
	BigDecimal num;
	if (intCompact != INFLATED)
	    num = BigDecimal.valueOf(intCompact, newScale);
	else
	    num = new BigDecimal(intVal, newScale);
        return (num.scale<0 ? num.setScale(0) : num);
    }

    /**
     * Returns a <tt>BigDecimal</tt> which is equivalent to this one
     * with the decimal point moved <tt>n</tt> places to the right.
     * If <tt>n</tt> is non-negative, the call merely subtracts
     * <tt>n</tt> from the scale.  If <tt>n</tt> is negative, the call
     * is equivalent to <tt>movePointLeft(-n)</tt>.  The
     * <tt>BigDecimal</tt> returned by this call has value <tt>(this
     * &times; 10<sup>n</sup>)</tt> and scale <tt>max(this.scale()-n,
     * 0)</tt>.
     *
     * @param  n number of places to move the decimal point to the right.
     * @return a <tt>BigDecimal</tt> which is equivalent to this one
     *         with the decimal point moved <tt>n</tt> places to the right.
     * @throws ArithmeticException if scale overflows.
     */
    public BigDecimal movePointRight(int n) {
        // Cannot use movePointLeft(-n) in case of n==Integer.MIN_VALUE
	int newScale = checkScale((long)scale - n);
	BigDecimal num;
	if (intCompact != INFLATED)
	    num = BigDecimal.valueOf(intCompact, newScale);
	else
	    num = new BigDecimal(intVal, newScale);
        return (num.scale<0 ? num.setScale(0) : num);
    }

    /**
     * Returns a BigDecimal whose numerical value is equal to
     * (<tt>this</tt> * 10<sup>n</sup>).  The scale of
     * the result is <tt>(this.scale() - n)</tt>.
     *
     * @throws ArithmeticException if the scale would be
     *         outside the range of a 32-bit integer.
     *
     * @since 1.5
     */
    public BigDecimal scaleByPowerOfTen(int n) {
	this.inflate();
        BigDecimal num = new BigDecimal(intVal, checkScale((long)scale - n));
        num.precision = precision;
        return num;
    }

    /**
     * Returns a <tt>BigDecimal</tt> which is numerically equal to
     * this one but with any trailing zeros removed from the
     * representation.  For example, stripping the trailing zeros from
     * the <tt>BigDecimal</tt> value <tt>600.0</tt>, which has
     * [<tt>BigInteger</tt>, <tt>scale</tt>] components equals to
     * [6000, 1], yields <tt>6E2</tt> with [<tt>BigInteger</tt>,
     * <tt>scale</tt>] components equals to [6, -2]
     *
     * @return a numerically equal <tt>BigDecimal</tt> with any
     * trailing zeros removed.
     * @since 1.5
     */
    public BigDecimal stripTrailingZeros() {
	this.inflate();
	return (new BigDecimal(intVal, scale)).stripZerosToMatchScale(Long.MIN_VALUE);
    }

    // Comparison Operations

    /**
     * Compares this <tt>BigDecimal</tt> with the specified
     * <tt>BigDecimal</tt>.  Two <tt>BigDecimal</tt> objects that are
     * equal in value but have a different scale (like 2.0 and 2.00)
     * are considered equal by this method.  This method is provided
     * in preference to individual methods for each of the six boolean
     * comparison operators (&lt;, ==, &gt;, &gt;=, !=, &lt;=).  The
     * suggested idiom for performing these comparisons is:
     * <tt>(x.compareTo(y)</tt> &lt;<i>op</i>&gt; <tt>0)</tt>, where
     * &lt;<i>op</i>&gt; is one of the six comparison operators.
     *
     * @param  val <tt>BigDecimal</tt> to which this <tt>BigDecimal</tt> is 
     *         to be compared.
     * @return -1, 0, or 1 as this <tt>BigDecimal</tt> is numerically 
     *          less than, equal to, or greater than <tt>val</tt>.
     */
    public int compareTo(BigDecimal val) {
	if (this.scale == val.scale &&
	    this.intCompact != INFLATED && 
	    val.intCompact  != INFLATED)
	    return longCompareTo(this.intCompact, val.intCompact);

 	// Optimization: would run fine without the next three lines
	int sigDiff = signum() - val.signum();
	if (sigDiff != 0)
	    return (sigDiff > 0 ? 1 : -1);

	// If the (adjusted) exponents are different we do not need to
	// expensively match scales and compare the significands
	int aethis = this.precision() - this.scale;    // [-1]
	int aeval  =  val.precision() - val.scale;     // [-1]
	if (aethis < aeval)
	    return -this.signum();
	else if (aethis > aeval)
	    return this.signum();

	// Scale and compare intVals
	BigDecimal arg[] = {this, val};
	matchScale(arg);
	if (arg[0].intCompact != INFLATED && 
	    arg[1].intCompact != INFLATED)
	    return longCompareTo(arg[0].intCompact, arg[1].intCompact);
	return arg[0].inflate().intVal.compareTo(arg[1].inflate().intVal);
    }

    /**
     * Compares this <tt>BigDecimal</tt> with the specified
     * <tt>Object</tt> for equality.  Unlike {@link
     * #compareTo(BigDecimal) compareTo}, this method considers two
     * <tt>BigDecimal</tt> objects equal only if they are equal in
     * value and scale (thus 2.0 is not equal to 2.00 when compared by
     * this method).
     *
     * @param  x <tt>Object</tt> to which this <tt>BigDecimal</tt> is 
     *         to be compared.
     * @return <tt>true</tt> if and only if the specified <tt>Object</tt> is a
     *         <tt>BigDecimal</tt> whose value and scale are equal to this 
     *         <tt>BigDecimal</tt>'s.
     * @see    #compareTo(java.math.BigDecimal)
     * @see    #hashCode
     */
    public boolean equals(Object x) {
        if (!(x instanceof BigDecimal))
            return false;
        BigDecimal xDec = (BigDecimal) x;
	if (scale != xDec.scale)
	    return false;
	if (this.intCompact != INFLATED && xDec.intCompact != INFLATED)
	    return this.intCompact == xDec.intCompact;
        return this.inflate().intVal.equals(xDec.inflate().intVal);
    }

    /**
     * Returns the minimum of this <tt>BigDecimal</tt> and
     * <tt>val</tt>.
     *
     * @param  val value with which the minimum is to be computed.
     * @return the <tt>BigDecimal</tt> whose value is the lesser of this 
     *         <tt>BigDecimal</tt> and <tt>val</tt>.  If they are equal, 
     *         as defined by the {@link #compareTo(BigDecimal) compareTo}  
     *         method, <tt>this</tt> is returned.
     * @see    #compareTo(java.math.BigDecimal)
     */
    public BigDecimal min(BigDecimal val) {
        return (compareTo(val) <= 0 ? this : val);
    }

    /**
     * Returns the maximum of this <tt>BigDecimal</tt> and <tt>val</tt>.
     *
     * @param  val value with which the maximum is to be computed.
     * @return the <tt>BigDecimal</tt> whose value is the greater of this 
     *         <tt>BigDecimal</tt> and <tt>val</tt>.  If they are equal, 
     *         as defined by the {@link #compareTo(BigDecimal) compareTo} 
     *         method, <tt>this</tt> is returned.
     * @see    #compareTo(java.math.BigDecimal)
     */
    public BigDecimal max(BigDecimal val) {
        return (compareTo(val) >= 0 ? this : val);
    }

    // Hash Function

    /**
     * Returns the hash code for this <tt>BigDecimal</tt>.  Note that
     * two <tt>BigDecimal</tt> objects that are numerically equal but
     * differ in scale (like 2.0 and 2.00) will generally <i>not</i>
     * have the same hash code.
     *
     * @return hash code for this <tt>BigDecimal</tt>.
     * @see #equals(Object)
     */
    public int hashCode() {
 	if (intCompact != INFLATED) {
 	    long val2 = (intCompact < 0)?-intCompact:intCompact;
 	    int temp = (int)( ((int)(val2 >>> 32)) * 31  +
 			      (val2 & 0xffffffffL));
 	    return 31*((intCompact < 0) ?-temp:temp) + scale;
 	} else
	    return 31*intVal.hashCode() + scale;
    }

    // Format Converters

    /**
     * Returns the string representation of this <tt>BigDecimal</tt>,
     * using scientific notation if an exponent is needed.
     * 
     * <p>A standard canonical string form of the <tt>BigDecimal</tt>
     * is created as though by the following steps: first, the
     * absolute value of the unscaled value of the <tt>BigDecimal</tt>
     * is converted to a string in base ten using the characters
     * <tt>'0'</tt> through <tt>'9'</tt> with no leading zeros (except
     * if its value is zero, in which case a single <tt>'0'</tt>
     * character is used).
     * 
     * <p>Next, an <i>adjusted exponent</i> is calculated; this is the
     * negated scale, plus the number of characters in the converted
     * unscaled value, less one.  That is,
     * <tt>-scale+(ulength-1)</tt>, where <tt>ulength</tt> is the
     * length of the absolute value of the unscaled value in decimal
     * digits (its <i>precision</i>).
     * 
     * <p>If the scale is greater than or equal to zero and the
     * adjusted exponent is greater than or equal to <tt>-6</tt>, the
     * number will be converted to a character form without using
     * exponential notation.  In this case, if the scale is zero then
     * no decimal point is added and if the scale is positive a
     * decimal point will be inserted with the scale specifying the
     * number of characters to the right of the decimal point.
     * <tt>'0'</tt> characters are added to the left of the converted
     * unscaled value as necessary.  If no character precedes the
     * decimal point after this insertion then a conventional
     * <tt>'0'</tt> character is prefixed.
     * 
     * <p>Otherwise (that is, if the scale is negative, or the
     * adjusted exponent is less than <tt>-6</tt>), the number will be
     * converted to a character form using exponential notation.  In
     * this case, if the converted <tt>BigInteger</tt> has more than
     * one digit a decimal point is inserted after the first digit.
     * An exponent in character form is then suffixed to the converted
     * unscaled value (perhaps with inserted decimal point); this
     * comprises the letter <tt>'E'</tt> followed immediately by the
     * adjusted exponent converted to a character form.  The latter is
     * in base ten, using the characters <tt>'0'</tt> through
     * <tt>'9'</tt> with no leading zeros, and is always prefixed by a
     * sign character <tt>'-'</tt> (<tt>'&#92;u002D'</tt>) if the
     * adjusted exponent is negative, <tt>'+'</tt>
     * (<tt>'&#92;u002B'</tt>) otherwise).
     * 
     * <p>Finally, the entire string is prefixed by a minus sign
     * character <tt>'-'</tt> (<tt>'&#92;u002D'</tt>) if the unscaled
     * value is less than zero.  No sign character is prefixed if the
     * unscaled value is zero or positive.
     * 
     * <p><b>Examples:</b>
     * <p>For each representation [<i>unscaled value</i>, <i>scale</i>]
     * on the left, the resulting string is shown on the right.
     * <pre>
     * [123,0]      &quot;123&quot;
     * [-123,0]     &quot;-123&quot;
     * [123,-1]     &quot;1.23E+3&quot;
     * [123,-3]     &quot;1.23E+5&quot;
     * [123,1]      &quot;12.3&quot;
     * [123,5]      &quot;0.00123&quot;
     * [123,10]     &quot;1.23E-8&quot;
     * [-123,12]    &quot;-1.23E-10&quot;
     * </pre>
     *
     * <b>Notes:</b>
     * <ol>
     *
     * <li>There is a one-to-one mapping between the distinguishable
     * <tt>BigDecimal</tt> values and the result of this conversion.
     * That is, every distinguishable <tt>BigDecimal</tt> value
     * (unscaled value and scale) has a unique string representation
     * as a result of using <tt>toString</tt>.  If that string
     * representation is converted back to a <tt>BigDecimal</tt> using
     * the {@link #BigDecimal(String)} constructor, then the original
     * value will be recovered.
     * 
     * <li>The string produced for a given number is always the same;
     * it is not affected by locale.  This means that it can be used
     * as a canonical string representation for exchanging decimal
     * data, or as a key for a Hashtable, etc.  Locale-sensitive
     * number formatting and parsing is handled by the {@link
     * java.text.NumberFormat} class and its subclasses.
     * 
     * <li>The {@link #toEngineeringString} method may be used for
     * presenting numbers with exponents in engineering notation, and the
     * {@link #setScale(int,RoundingMode) setScale} method may be used for
     * rounding a <tt>BigDecimal</tt> so it has a known number of digits after
     * the decimal point.
     * 
     * <li>The digit-to-character mapping provided by
     * <tt>Character.forDigit</tt> is used.
     *
     * </ol>
     *
     * @return string representation of this <tt>BigDecimal</tt>.
     * @see    Character#forDigit
     * @see    #BigDecimal(java.lang.String)
     */
    public String toString() {
	if (stringCache == null)
	    stringCache = layoutChars(true);
	return stringCache;
    }

    /**
     * Returns a string representation of this <tt>BigDecimal</tt>,
     * using engineering notation if an exponent is needed.
     * 
     * <p>Returns a string that represents the <tt>BigDecimal</tt> as
     * described in the {@link #toString()} method, except that if
     * exponential notation is used, the power of ten is adjusted to
     * be a multiple of three (engineering notation) such that the
     * integer part of nonzero values will be in the range 1 through
     * 999.  If exponential notation is used for zero values, a
     * decimal point and one or two fractional zero digits are used so
     * that the scale of the zero value is preserved.  Note that
     * unlike the output of {@link #toString()}, the output of this
     * method is <em>not</em> guaranteed to recover the same [integer,
     * scale] pair of this <tt>BigDecimal</tt> if the output string is
     * converting back to a <tt>BigDecimal</tt> using the {@linkplain
     * #BigDecimal(String) string constructor}.  The result of this method meets
     * the weaker constraint of always producing a numerically equal
     * result from applying the string constructor to the method's output.
     *
     * @return string representation of this <tt>BigDecimal</tt>, using
     *         engineering notation if an exponent is needed.
     * @since  1.5
     */
    public String toEngineeringString() {
        return layoutChars(false);
    }

    /**
     * Returns a string representation of this <tt>BigDecimal</tt>
     * without an exponent field.  For values with a positive scale,
     * the number of digits to the right of the decimal point is used
     * to indicate scale.  For values with a zero or negative scale,
     * the resulting string is generated as if the value were
     * converted to a numerically equal value with zero scale and as
     * if all the trailing zeros of the zero scale value were present
     * in the result.
     *
     * The entire string is prefixed by a minus sign character '-'
     * (<tt>'&#92;u002D'</tt>) if the unscaled value is less than
     * zero. No sign character is prefixed if the unscaled value is
     * zero or positive.
     *
     * Note that if the result of this method is passed to the
     * {@linkplain #BigDecimal(String) string constructor}, only the
     * numerical value of this <tt>BigDecimal</tt> will necessarily be
     * recovered; the representation of the new <tt>BigDecimal</tt>
     * may have a different scale.  In particular, if this
     * <tt>BigDecimal</tt> has a negative scale, the string resulting
     * from this method will have a scale of zero when processed by
     * the string constructor.
     *
     * (This method behaves analogously to the <tt>toString</tt>
     * method in 1.4 and earlier releases.)
     *
     * @return a string representation of this <tt>BigDecimal</tt>
     * without an exponent field.
     * @since 1.5
     * @see #toString()
     * @see #toEngineeringString()
     */
    public String toPlainString() {
	BigDecimal bd = this;
	if (bd.scale < 0)
	    bd = bd.setScale(0);
	bd.inflate();
	if (bd.scale == 0)	// No decimal point
	    return bd.intVal.toString();
        return bd.getValueString(bd.signum(), bd.intVal.abs().toString(), bd.scale);
    }

    /* Returns a digit.digit string */
    private String getValueString(int signum, String intString, int scale) {
 	/* Insert decimal point */
 	StringBuilder buf;
 	int insertionPoint = intString.length() - scale;
 	if (insertionPoint == 0) {  /* Point goes right before intVal */
 	    return (signum<0 ? "-0." : "0.") + intString;
 	} else if (insertionPoint > 0) { /* Point goes inside intVal */
 	    buf = new StringBuilder(intString);
 	    buf.insert(insertionPoint, '.');
 	    if (signum < 0)
 		buf.insert(0, '-');
 	} else { /* We must insert zeros between point and intVal */
 	    buf = new StringBuilder(3-insertionPoint + intString.length());
 	    buf.append(signum<0 ? "-0." : "0.");
 	    for (int i=0; i<-insertionPoint; i++)
 		buf.append('0');
 	    buf.append(intString);
 	}
 	return buf.toString();
    }

    /**
     * Converts this <tt>BigDecimal</tt> to a <tt>BigInteger</tt>.
     * This conversion is analogous to a <a
     * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
     * primitive conversion</i></a> from <tt>double</tt> to
     * <tt>long</tt> as defined in the <a
     * href="http://java.sun.com/docs/books/jls/html/">Java Language
     * Specification</a>: any fractional part of this
     * <tt>BigDecimal</tt> will be discarded.  Note that this
     * conversion can lose information about the precision of the
     * <tt>BigDecimal</tt> value.
     * <p>
     * To have an exception thrown if the conversion is inexact (in
     * other words if a nonzero fractional part is discarded), use the
     * {@link #toBigIntegerExact()} method.
     *
     * @return this <tt>BigDecimal</tt> converted to a <tt>BigInteger</tt>.
     */
    public BigInteger toBigInteger() {
        // force to an integer, quietly
        return this.setScale(0, ROUND_DOWN).inflate().intVal;
    }

    /**
     * Converts this <tt>BigDecimal</tt> to a <tt>BigInteger</tt>,
     * checking for lost information.  An exception is thrown if this
     * <tt>BigDecimal</tt> has a nonzero fractional part.
     *
     * @return this <tt>BigDecimal</tt> converted to a <tt>BigInteger</tt>.
     * @throws ArithmeticException if <tt>this</tt> has a nonzero
     *         fractional part.
     * @since  1.5
     */
    public BigInteger toBigIntegerExact() {
        // round to an integer, with Exception if decimal part non-0
        return this.setScale(0, ROUND_UNNECESSARY).inflate().intVal;
    }

    /**
     * Converts this <tt>BigDecimal</tt> to a <tt>long</tt>.  This
     * conversion is analogous to a <a
     * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
     * primitive conversion</i></a> from <tt>double</tt> to
     * <tt>short</tt> as defined in the <a
     * href="http://java.sun.com/docs/books/jls/html/">Java Language
     * Specification</a>: any fractional part of this
     * <tt>BigDecimal</tt> will be discarded, and if the resulting
     * &quot;<tt>BigInteger</tt>&quot; is too big to fit in a
     * <tt>long</tt>, only the low-order 64 bits are returned.
     * Note that this conversion can lose information about the
     * overall magnitude and precision of this <tt>BigDecimal</tt> value as well
     * as return a result with the opposite sign.
     * 
     * @return this <tt>BigDecimal</tt> converted to a <tt>long</tt>.
     */
    public long longValue(){
	return (intCompact != INFLATED && scale == 0) ?
	    intCompact:
	    toBigInteger().longValue();
    }

    /**
     * Converts this <tt>BigDecimal</tt> to a <tt>long</tt>, checking
     * for lost information.  If this <tt>BigDecimal</tt> has a
     * nonzero fractional part or is out of the possible range for a
     * <tt>long</tt> result then an <tt>ArithmeticException</tt> is
     * thrown.
     *
     * @return this <tt>BigDecimal</tt> converted to a <tt>long</tt>.
     * @throws ArithmeticException if <tt>this</tt> has a nonzero
     *         fractional part, or will not fit in a <tt>long</tt>.
     * @since  1.5
     */
    public long longValueExact() {
	if (intCompact != INFLATED && scale == 0) 
	    return intCompact;
        // If more than 19 digits in integer part it cannot possibly fit
        if ((precision() - scale) > 19) // [OK for negative scale too]
            throw new java.lang.ArithmeticException("Overflow");
        // Fastpath zero and < 1.0 numbers (the latter can be very slow
        // to round if very small)
        if (this.signum() == 0)
            return 0;
        if ((this.precision() - this.scale) <= 0)
            throw new ArithmeticException("Rounding necessary");
        // round to an integer, with Exception if decimal part non-0
        BigDecimal num = this.setScale(0, ROUND_UNNECESSARY).inflate();
        if (num.precision() >= 19) {    // need to check carefully
            if (LONGMIN == null) {      // initialize constants
                LONGMIN = BigInteger.valueOf(Long.MIN_VALUE);
                LONGMAX = BigInteger.valueOf(Long.MAX_VALUE);
            }
            if ((num.intVal.compareTo(LONGMIN) < 0) ||
                (num.intVal.compareTo(LONGMAX) > 0))
                throw new java.lang.ArithmeticException("Overflow");
        }
        return num.intVal.longValue();
    }
    // These constants are only initialized if needed
    /** BigInteger equal to Long.MIN_VALUE. */
    private static BigInteger LONGMIN = null;
    /** BigInteger equal to Long.MAX_VALUE. */
    private static BigInteger LONGMAX = null;

    /**
     * Converts this <tt>BigDecimal</tt> to an <tt>int</tt>.  This
     * conversion is analogous to a <a
     * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
     * primitive conversion</i></a> from <tt>double</tt> to
     * <tt>short</tt> as defined in the <a
     * href="http://java.sun.com/docs/books/jls/html/">Java Language
     * Specification</a>: any fractional part of this
     * <tt>BigDecimal</tt> will be discarded, and if the resulting
     * &quot;<tt>BigInteger</tt>&quot; is too big to fit in an
     * <tt>int</tt>, only the low-order 32 bits are returned.
     * Note that this conversion can lose information about the
     * overall magnitude and precision of this <tt>BigDecimal</tt>
     * value as well as return a result with the opposite sign.
     * 
     * @return this <tt>BigDecimal</tt> converted to an <tt>int</tt>.
     */
    public int intValue() {
	return  (intCompact != INFLATED && scale == 0) ?
	    (int)intCompact :
	    toBigInteger().intValue();
    }

    /**
     * Converts this <tt>BigDecimal</tt> to an <tt>int</tt>, checking
     * for lost information.  If this <tt>BigDecimal</tt> has a
     * nonzero fractional part or is out of the possible range for an
     * <tt>int</tt> result then an <tt>ArithmeticException</tt> is
     * thrown.
     *
     * @return this <tt>BigDecimal</tt> converted to an <tt>int</tt>.
     * @throws ArithmeticException if <tt>this</tt> has a nonzero
     *         fractional part, or will not fit in an <tt>int</tt>.
     * @since  1.5
     */
    public int intValueExact() {
       long num;
       num = this.longValueExact();     // will check decimal part
       if ((int)num != num)
           throw new java.lang.ArithmeticException("Overflow");
       return (int)num;
    }

    /**
     * Converts this <tt>BigDecimal</tt> to a <tt>short</tt>, checking
     * for lost information.  If this <tt>BigDecimal</tt> has a
     * nonzero fractional part or is out of the possible range for a
     * <tt>short</tt> result then an <tt>ArithmeticException</tt> is
     * thrown.
     *
     * @return this <tt>BigDecimal</tt> converted to a <tt>short</tt>.
     * @throws ArithmeticException if <tt>this</tt> has a nonzero
     *         fractional part, or will not fit in a <tt>short</tt>.
     * @since  1.5
     */
    public short shortValueExact() {
       long num;
       num = this.longValueExact();     // will check decimal part
       if ((short)num != num)
           throw new java.lang.ArithmeticException("Overflow");
       return (short)num;
    }

    /**
     * Converts this <tt>BigDecimal</tt> to a <tt>byte</tt>, checking
     * for lost information.  If this <tt>BigDecimal</tt> has a
     * nonzero fractional part or is out of the possible range for a
     * <tt>byte</tt> result then an <tt>ArithmeticException</tt> is
     * thrown.
     *
     * @return this <tt>BigDecimal</tt> converted to a <tt>byte</tt>.
     * @throws ArithmeticException if <tt>this</tt> has a nonzero
     *         fractional part, or will not fit in a <tt>byte</tt>.
     * @since  1.5
     */
    public byte byteValueExact() {
       long num;
       num = this.longValueExact();     // will check decimal part
       if ((byte)num != num)
           throw new java.lang.ArithmeticException("Overflow");
       return (byte)num;
    }

    /**
     * Converts this <tt>BigDecimal</tt> to a <tt>float</tt>.
     * This conversion is similar to the <a
     * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
     * primitive conversion</i></a> from <tt>double</tt> to
     * <tt>float</tt> defined in the <a
     * href="http://java.sun.com/docs/books/jls/html/">Java Language
     * Specification</a>: if this <tt>BigDecimal</tt> has too great a
     * magnitude to represent as a <tt>float</tt>, it will be
     * converted to {@link Float#NEGATIVE_INFINITY} or {@link
     * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
     * the return value is finite, this conversion can lose
     * information about the precision of the <tt>BigDecimal</tt>
     * value.
     * 
     * @return this <tt>BigDecimal</tt> converted to a <tt>float</tt>.
     */
    public float floatValue(){
	if (scale == 0 && intCompact != INFLATED)
		return (float)intCompact;
	// Somewhat inefficient, but guaranteed to work.
	return Float.parseFloat(this.toString());
    }

    /**
     * Converts this <tt>BigDecimal</tt> to a <tt>double</tt>.
     * This conversion is similar to the <a
     * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
     * primitive conversion</i></a> from <tt>double</tt> to
     * <tt>float</tt> as defined in the <a
     * href="http://java.sun.com/docs/books/jls/html/">Java Language
     * Specification</a>: if this <tt>BigDecimal</tt> has too great a
     * magnitude represent as a <tt>double</tt>, it will be
     * converted to {@link Double#NEGATIVE_INFINITY} or {@link
     * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
     * the return value is finite, this conversion can lose
     * information about the precision of the <tt>BigDecimal</tt>
     * value.
     * 
     * @return this <tt>BigDecimal</tt> converted to a <tt>double</tt>.
     */
    public double doubleValue(){
	if (scale == 0 && intCompact != INFLATED)
	    return (double)intCompact;
	// Somewhat inefficient, but guaranteed to work.
	return Double.parseDouble(this.toString());
    }

    /**
     * Returns the size of an ulp, a unit in the last place, of this
     * <tt>BigDecimal</tt>.  An ulp of a nonzero <tt>BigDecimal</tt>
     * value is the positive distance between this value and the
     * <tt>BigDecimal</tt> value next larger in magnitude with the
     * same number of digits.  An ulp of a zero value is numerically
     * equal to 1 with the scale of <tt>this</tt>.  The result is
     * stored with the same scale as <code>this</code> so the result
     * for zero and nonzero values is equal to <code>[1,
     * this.scale()]</code>.
     *
     * @return the size of an ulp of <tt>this</tt>
     * @since 1.5
     */
    public BigDecimal ulp() {
	return BigDecimal.valueOf(1, this.scale());
    }

    // Private "Helper" Methods

    /**
     * Lay out this <tt>BigDecimal</tt> into a <tt>char[]</tt> array.
     * The Java 1.2 equivalent to this was called <tt>getValueString</tt>.
     *
     * @param  sci <tt>true</tt> for Scientific exponential notation;
     *          <tt>false</tt> for Engineering
     * @return string with canonical string representation of this
     *         <tt>BigDecimal</tt>
     */
    private String layoutChars(boolean sci) {
        if (scale == 0)                      // zero scale is trivial
	    return (intCompact != INFLATED) ? 
		Long.toString(intCompact):
		intVal.toString();

        // Get the significand as an absolute value
        char coeff[];
	if (intCompact != INFLATED)
	    coeff = Long.toString(Math.abs(intCompact)).toCharArray();
	else
	    coeff = intVal.abs().toString().toCharArray();

        // Construct a buffer, with sufficient capacity for all cases.
        // If E-notation is needed, length will be: +1 if negative, +1
        // if '.' needed, +2 for "E+", + up to 10 for adjusted exponent.
        // Otherwise it could have +1 if negative, plus leading "0.00000"
        StringBuilder buf=new StringBuilder(coeff.length+14);
        if (signum() < 0)             // prefix '-' if negative
            buf.append('-');
        long adjusted = -(long)scale + (coeff.length-1);
        if ((scale >= 0) && (adjusted >= -6)) { // plain number
            int pad = scale - coeff.length;  // count of padding zeros
            if (pad >= 0) {                  // 0.xxx form
                buf.append('0');
                buf.append('.');
                for (; pad>0; pad--) {
                    buf.append('0');
                }
                buf.append(coeff);
            } else {                         // xx.xx form
                buf.append(coeff, 0, -pad);
                buf.append('.');
                buf.append(coeff, -pad, scale);
            }
        } else { // E-notation is needed
            if (sci) {                       // Scientific notation
                buf.append(coeff[0]);        // first character
                if (coeff.length > 1) {      // more to come
                    buf.append('.');
                    buf.append(coeff, 1, coeff.length-1);
                }
            } else {                         // Engineering notation
                int sig = (int)(adjusted % 3);
                if (sig < 0)
                    sig += 3;                // [adjusted was negative]
                adjusted -= sig;             // now a multiple of 3
                sig++;
		if (signum() == 0) {
		    switch (sig) {
		    case 1:
			buf.append('0'); // exponent is a multiple of three
			break;
		    case 2:
			buf.append("0.00");
			adjusted += 3;
			break;
		    case 3:
			buf.append("0.0");
			adjusted += 3;
			break;
		    default:
			throw new AssertionError("Unexpected sig value " + sig);
		    }
		} else if (sig >= coeff.length) {   // significand all in integer
                    buf.append(coeff, 0, coeff.length);
                    // may need some zeros, too
                    for (int i = sig - coeff.length; i > 0; i--)
                        buf.append('0');
                } else {                     // xx.xxE form
                    buf.append(coeff, 0, sig);
                    buf.append('.');
                    buf.append(coeff, sig, coeff.length-sig);
                }
            }
            if (adjusted != 0) {             // [!sci could have made 0]
                buf.append('E');
                if (adjusted > 0)            // force sign for positive
                    buf.append('+');
                buf.append(adjusted);
            }
        }
        return buf.toString();
    }

    /**
     * Return 10 to the power n, as a <tt>BigInteger</tt>.
     *
     * @param  n the power of ten to be returned (>=0)
     * @return a <tt>BigInteger</tt> with the value (10<sup>n</sup>)
     */
    private static BigInteger tenToThe(int n) {
        if (n < TENPOWERS.length)     // use value from constant array
            return TENPOWERS[n];
        // BigInteger.pow is slow, so make 10**n by constructing a
        // BigInteger from a character string (still not very fast)
        char tenpow[] = new char[n + 1];
        tenpow[0] = '1';
        for (int i = 1; i <= n; i++)
	    tenpow[i] = '0';
        return new BigInteger(tenpow);
    }
    private static BigInteger TENPOWERS[] = {BigInteger.ONE,
        BigInteger.valueOf(10),       BigInteger.valueOf(100),
        BigInteger.valueOf(1000),     BigInteger.valueOf(10000),
        BigInteger.valueOf(100000),   BigInteger.valueOf(1000000),
        BigInteger.valueOf(10000000), BigInteger.valueOf(100000000),
        BigInteger.valueOf(1000000000)};

    /**
     * Compute val * 10 ^ n; return this product if it is
     * representable as a long, INFLATED otherwise.
     */
    private static long longTenToThe(long val, int n) {
	// System.err.print("\tval " + val + "\t power " + n + "\tresult ");
	if (n >= 0 && n < thresholds.length) {
	    if (Math.abs(val) <= thresholds[n][0] ) {
		// System.err.println(val * thresholds[n][1]);
		return val * thresholds[n][1];
	    }
	}
	// System.err.println(INFLATED);
	return INFLATED;
    }

    private static long thresholds[][] = {
	{Long.MAX_VALUE, 			1L},		// 0
	{Long.MAX_VALUE/10L, 			10L},		// 1
	{Long.MAX_VALUE/100L, 			100L},		// 2
	{Long.MAX_VALUE/1000L, 			1000L},		// 3
	{Long.MAX_VALUE/10000L, 		10000L},	// 4
	{Long.MAX_VALUE/100000L, 		100000L},	// 5
	{Long.MAX_VALUE/1000000L, 		1000000L},	// 6
	{Long.MAX_VALUE/10000000L, 		10000000L},	// 7
	{Long.MAX_VALUE/100000000L, 		100000000L},	// 8
	{Long.MAX_VALUE/1000000000L, 		1000000000L},	// 9
	{Long.MAX_VALUE/10000000000L, 		10000000000L},	// 10
	{Long.MAX_VALUE/100000000000L, 		100000000000L},	// 11
	{Long.MAX_VALUE/1000000000000L, 	1000000000000L},// 12
	{Long.MAX_VALUE/100000000000000L,	10000000000000L},// 13
    };

    private static boolean compactLong(long val) {
	return (val != Long.MIN_VALUE);
    }

    /**
     * Assign appropriate BigInteger to intVal field if intVal is
     * null, i.e. the compact representation is in use.
     */
    private BigDecimal inflate() {
	if (intVal == null)
	    intVal = BigInteger.valueOf(intCompact);
	return this;
    }

    /**
     * Match the scales of two <tt>BigDecimal</tt>s to align their
     * least significant digits.
     * 
     * <p>If the scales of val[0] and val[1] differ, rescale
     * (non-destructively) the lower-scaled <tt>BigDecimal</tt> so
     * they match.  That is, the lower-scaled reference will be
     * replaced by a reference to a new object with the same scale as
     * the other <tt>BigDecimal</tt>.
     *
     * @param  val array of two elements referring to the two
     *         <tt>BigDecimal</tt>s to be aligned.
     */
    private static void matchScale(BigDecimal[] val) {
        if (val[0].scale < val[1].scale)
            val[0] = val[0].setScale(val[1].scale);
        else if (val[1].scale < val[0].scale)
            val[1] = val[1].setScale(val[0].scale);
    }

    /**
     * Reconstitute the <tt>BigDecimal</tt> instance from a stream (that is,
     * deserialize it).
     *
     * @param s the stream being read.
     */
    private synchronized void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in all fields
        s.defaultReadObject();
        // validate possibly bad fields
	if (intVal == null) {
            String message = "BigDecimal: null intVal in stream";
            throw new java.io.StreamCorruptedException(message);
        // [all values of scale are now allowed]
        }
	// Set intCompact to uninitialized value; could also see if the
	// intVal was small enough to fit as a compact value.
	intCompact = INFLATED;
    }

   /**
    * Serialize this <tt>BigDecimal</tt> to the stream in question
    *
    * @param s the stream to serialize to.
    */
   private void writeObject(java.io.ObjectOutputStream s)
       throws java.io.IOException {
       // Must inflate to maintain compatible serial form.
       this.inflate();

       // Write proper fields
       s.defaultWriteObject();
   }

    /**
     * Returns the length of this <tt>BigDecimal</tt>, in decimal digits.
     *
     * Notes:
     *<ul>
     * <li> This is performance-critical; most operations where a
     *      context is supplied will need at least one call to this
     *      method.
     *
     * <li> This should be a method on BigInteger; the call to this
     *      method in precision() can then be replaced with the
     *      term: intVal.digitLength().  It could also be called
     *      precision() in BigInteger.
     *
     *      Better still -- the precision lookaside could be moved to
     *      BigInteger, too.
     *
     * <li> This could/should use MutableBigIntegers directly for the
     *      reduction loop.
     *<ul>
     * @return the length of the unscaled value, in decimal digits
     */
    private int digitLength() {
	if (intCompact != INFLATED && Math.abs(intCompact) <= Integer.MAX_VALUE)
	    return intLength(Math.abs((int)intCompact));
        if (signum() == 0)       // 0 is one decimal digit
            return 1;
	this.inflate();
        // we have a nonzero magnitude
        BigInteger work = intVal;
        int digits = 0;                 // counter
        for (;work.mag.length>1;) {
            // here when more than one integer in the magnitude; divide
            // by a billion (reduce by 9 digits) and try again
            work = work.divide(TENPOWERS[9]);
            digits += 9;
            if (work.signum() == 0)     // the division was exact
                return digits;          // (a power of a billion)
        }
        // down to a simple nonzero integer
        digits += intLength(work.mag[0]);
        // System.out.println("digitLength... "+this+"  ->  "+digits);
        return digits;
    }

    private static int[] ilogTable = {
	0,
	9,
	99,
	999,
	9999,
	99999,
	999999,
	9999999, 
	99999999, 
	999999999, 
	Integer.MAX_VALUE};

    /**
     * Returns the length of an unsigned <tt>int</tt>, in decimal digits.
     * @param i the <tt>int</tt> (treated as unsigned)
     * @return the length of the unscaled value, in decimal digits
     */
    private int intLength(int x) {
        int digits;
        if (x < 0) {            // 'negative' is 10 digits unsigned
            return  10;
        } else {                // positive integer
	    if (x <= 9)
		return 1;
	    // "Hacker's Delight"  section 11-4
	    for(int i = -1; ; i++) {
		if (x <= ilogTable[i+1])
		    return i +1;
	    }
        }
    }

    /**
     * Remove insignificant trailing zeros from this
     * <tt>BigDecimal</tt> until the preferred scale is reached or no
     * more zeros can be removed.  If the preferred scale is less than
     * Integer.MIN_VALUE, all the trailing zeros will be removed.
     *
     * <tt>BigInteger</tt> assistance could help, here?
     *
     * <p>WARNING: This method should only be called on new objects as
     * it mutates the value fields.
     *
     * @return this <tt>BigDecimal</tt> with a scale possibly reduced
     * to be closed to the preferred scale.
     */
    private BigDecimal stripZerosToMatchScale(long preferredScale) {
	boolean compact = (intCompact != INFLATED);
	this.inflate();
        BigInteger qr[];                // quotient-remainder pair
        while ( intVal.abs().compareTo(BigInteger.TEN) >= 0 && 
		scale > preferredScale) {
            if (intVal.testBit(0))
                break;                  // odd number cannot end in 0
            qr = intVal.divideAndRemainder(BigInteger.TEN);
            if (qr[1].signum() != 0)
                break;                  // non-0 remainder
            intVal=qr[0];
            scale = checkScale((long)scale-1);  // could Overflow
            if (precision > 0)          // adjust precision if known
              precision--;
        }
	if (compact)
	    intCompact = intVal.longValue();
        return this;
    }

    /**
     * Check a scale for Underflow or Overflow.  If this BigDecimal is
     * uninitialized or initialized and nonzero, throw an exception if
     * the scale is out of range.  If this is zero, saturate the scale
     * to the extreme value of the right sign if the scale is out of
     * range.
     *
     * @param val The new scale.
     * @throws ArithmeticException (overflow or underflow) if the new
     *         scale is out of range.
     * @return validated scale as an int.
     */
    private int checkScale(long val) {
        if ((int)val != val) {
	    if ((this.intCompact != INFLATED && this.intCompact != 0) || 
		(this.intVal   != null     && this.signum() != 0) || 
		(this.intVal == null && this.intCompact == INFLATED) ) {
		if (val > Integer.MAX_VALUE)
		    throw new ArithmeticException("Underflow");
		if (val < Integer.MIN_VALUE)
		    throw new ArithmeticException("Overflow");
	    } else {
		return (val > Integer.MAX_VALUE)?Integer.MAX_VALUE:Integer.MIN_VALUE;
	    }
        }
        return (int)val;
    }

    /**
     * Round an operand; used only if digits &gt; 0.  Does not change
     * <tt>this</tt>; if rounding is needed a new <tt>BigDecimal</tt>
     * is created and returned.
     *
     * @param mc the context to use.
     * @throws ArithmeticException if the result is inexact but the
     *         rounding mode is <tt>UNNECESSARY</tt>.
     */
    private BigDecimal roundOp(MathContext mc) {
        BigDecimal rounded = doRound(mc);
        return rounded;
    }

    /** Round this BigDecimal according to the MathContext settings;
     *  used only if precision &gt; 0.
     *
     * <p>WARNING: This method should only be called on new objects as
     * it mutates the value fields.
     *
     * @param mc the context to use.
     * @throws ArithmeticException if the rounding mode is
     *         <tt>RoundingMode.UNNECESSARY</tt> and the
     *         <tt>BigDecimal</tt> operation would require rounding.
     */
    private void roundThis(MathContext mc) {
        BigDecimal rounded = doRound(mc);
        if (rounded == this)                 // wasn't rounded
            return;
        this.intVal	= rounded.intVal;
        this.intCompact	= rounded.intCompact;
        this.scale	= rounded.scale;
        this.precision	= rounded.precision;
    }

    /**
     * Returns a <tt>BigDecimal</tt> rounded according to the
     * MathContext settings; used only if <tt>mc.precision&gt;0</tt>.
     * Does not change <tt>this</tt>; if rounding is needed a new
     * <tt>BigDecimal</tt> is created and returned.
     *
     * @param mc the context to use.
     * @return a <tt>BigDecimal</tt> rounded according to the MathContext
     *         settings.  May return this, if no rounding needed.
     * @throws ArithmeticException if the rounding mode is
     *         <tt>RoundingMode.UNNECESSARY</tt> and the
     *         result is inexact.
     */
    private BigDecimal doRound(MathContext mc) {
	this.inflate();
        if (precision == 0) {
            if (mc.roundingMax != null
                && intVal.compareTo(mc.roundingMax) < 0
                && intVal.compareTo(mc.roundingMin) > 0)
                return this; // no rounding needed
            precision();                     // find it
	}
        int drop = precision - mc.precision;   // digits to discard
        if (drop <= 0)                       // we fit
            return this;
        BigDecimal rounded = dropDigits(mc, drop);
        // we need to double-check, in case of the 999=>1000 case
        return rounded.doRound(mc);
    }

    /**
     * Removes digits from the significand of a <tt>BigDecimal</tt>,
     * rounding according to the MathContext settings.  Does not
     * change <tt>this</tt>; a new <tt>BigDecimal</tt> is always
     * created and returned.
     * 
     * <p>Actual rounding is carried out, as before, by the divide
     * method, as this minimized code changes.  It might be more
     * efficient in most cases to move rounding to here, so we can do
     * a round-to-length rather than round-to-scale.
     *
     * @param mc the context to use.
     * @param drop the number of digits to drop, must be &gt; 0
     * @return a <tt>BigDecimal</tt> rounded according to the MathContext
     *         settings.  May return <tt>this</tt>, if no rounding needed.
     * @throws ArithmeticException if the rounding mode is
     *         <tt>RoundingMode.UNNECESSARY</tt> and the
     *         result is inexact.
     */
    private BigDecimal dropDigits(MathContext mc, int drop) {
        // here if we need to round; make the divisor = 10**drop)
        // [calculating the BigInteger here saves setScale later]
        BigDecimal divisor = new BigDecimal(tenToThe(drop), 0);

        // divide to same scale to force round to length
        BigDecimal rounded = this.divide(divisor, scale,
					 mc.roundingMode.oldMode);
        rounded.scale = checkScale((long)rounded.scale - drop ); // adjust the scale
        return rounded;
    }

    private static int longCompareTo(long x, long y) {
	return (x < y) ? -1 : (x == y) ? 0 : 1;
    }

    /*
     * Internal printing routine
     */
    private static void print(String name, BigDecimal bd) {
	System.err.format("%s:\tintCompact %d\tintVal %d\tscale %d\tprecision %d%n",
			  name,
			  bd.intCompact,
			  bd.intVal,
			  bd.scale,
			  bd.precision);
    }

    /**
     * Check internal invariants of this BigDecimal.  These invariants
     * include:
     *
     * <ul>
     *
     * <li>The object must be initialized; either intCompact must not be
     * INFLATED or intVal is non-null.  Both of these conditions may
     * be true.
     *
     * <li>If both intCompact and intVal and set, their values must be
     * consistent.
     * 
     * <li>If precision is nonzero, it must have the right value.
     * </ul>
     */
    private BigDecimal audit() {
	// Check precision
	if (precision > 0) {
	    if (precision != digitLength()) {
		print("audit", this);
		throw new AssertionError("precision mismatch");
	    }
	}

	if (intCompact == INFLATED) {
	    if (intVal == null) { 
		print("audit", this);
		throw new AssertionError("null intVal");
	    }
	} else {
	    if (intVal != null) {
		long val = intVal.longValue();
		if (val != intCompact) {
		    print("audit", this);
		    throw new AssertionError("Inconsistent state, intCompact=" + 
					     intCompact + "\t intVal=" + val);
		}
	    }
	}
	return this;
    }
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar