1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/* * @(#)RoundingMode.java 1.5 06/04/07 * * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ /* * @(#)RoundingMode.java 1.x 01/xx/xx * * Copyright 2001 Sun Microsystems, Inc. All Rights Reserved. * Portions Copyright IBM Corporation, 2001. All Rights Reserved. * * This software is the proprietary information of Sun Microsystems, Inc. * Use is subject to license terms. * */ package java.math; /** * Specifies a <i>rounding behavior</i> for numerical operations * capable of discarding precision. Each rounding mode indicates how * the least significant returned digit of a rounded result is to be * calculated. If fewer digits are returned than the digits needed to * represent the exact numerical result, the discarded digits will be * referred to as the <i>discarded fraction</i> regardless the digits' * contribution to the value of the number. In other words, * considered as a numerical value, the discarded fraction could have * an absolute value greater than one. * * <p>Each rounding mode description includes a table listing how * different two-digit decimal values would round to a one digit * decimal value under the rounding mode in question. The result * column in the tables could be gotten by creating a * <tt>BigDecimal</tt> number with the specified value, forming a * {@link MathContext} object with the proper settings * (<tt>precision</tt> set to <tt>1</tt>, and the * <tt>roundingMode</tt> set to the rounding mode in question), and * calling {@link BigDecimal#round round} on this number with the * proper <tt>MathContext</tt>. A summary table showing the results * of these rounding operations for all rounding modes appears below. * *<p> *<table border> * <caption top><h3>Summary of Rounding Operations Under Different Rounding Modes</h3></caption> * <tr><th></th><th colspan=8>Result of rounding input to one digit with the given * rounding mode</th> * <tr valign=top> * <th>Input Number</th> <th><tt>UP</tt></th> * <th><tt>DOWN</tt></th> * <th><tt>CEILING</tt></th> * <th><tt>FLOOR</tt></th> * <th><tt>HALF_UP</tt></th> * <th><tt>HALF_DOWN</tt></th> * <th><tt>HALF_EVEN</tt></th> * <th><tt>UNNECESSARY</tt></th> * * <tr align=right><td>5.5</td> <td>6</td> <td>5</td> <td>6</td> <td>5</td> <td>6</td> <td>5</td> <td>6</td> <td>throw <tt>ArithmeticException</tt></td> * <tr align=right><td>2.5</td> <td>3</td> <td>2</td> <td>3</td> <td>2</td> <td>3</td> <td>2</td> <td>2</td> <td>throw <tt>ArithmeticException</tt></td> * <tr align=right><td>1.6</td> <td>2</td> <td>1</td> <td>2</td> <td>1</td> <td>2</td> <td>2</td> <td>2</td> <td>throw <tt>ArithmeticException</tt></td> * <tr align=right><td>1.1</td> <td>2</td> <td>1</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>throw <tt>ArithmeticException</tt></td> * <tr align=right><td>1.0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> * <tr align=right><td>-1.0</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> * <tr align=right><td>-1.1</td> <td>-2</td> <td>-1</td> <td>-1</td> <td>-2</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>throw <tt>ArithmeticException</tt></td> * <tr align=right><td>-1.6</td> <td>-2</td> <td>-1</td> <td>-1</td> <td>-2</td> <td>-2</td> <td>-2</td> <td>-2</td> <td>throw <tt>ArithmeticException</tt></td> * <tr align=right><td>-2.5</td> <td>-3</td> <td>-2</td> <td>-2</td> <td>-3</td> <td>-3</td> <td>-2</td> <td>-2</td> <td>throw <tt>ArithmeticException</tt></td> * <tr align=right><td>-5.5</td> <td>-6</td> <td>-5</td> <td>-5</td> <td>-6</td> <td>-6</td> <td>-5</td> <td>-6</td> <td>throw <tt>ArithmeticException</tt></td> *</table> * * * <p>This <tt>enum</tt> is intended to replace the integer-based * enumeration of rounding mode constants in {@link BigDecimal} * ({@link BigDecimal#ROUND_UP}, {@link BigDecimal#ROUND_DOWN}, * etc. ). * * @see BigDecimal * @see MathContext * @version 1.x 01/xx/xx * @author Josh Bloch * @author Mike Cowlishaw * @author Joseph D. Darcy * @since 1.5 */ public enum RoundingMode { /** * Rounding mode to round away from zero. Always increments the * digit prior to a non-zero discarded fraction. Note that this * rounding mode never decreases the magnitude of the calculated * value. * *<p>Example: *<table border> *<tr valign=top><th>Input Number</th> * <th>Input rounded to one digit<br> with <tt>UP</tt> rounding *<tr align=right><td>5.5</td> <td>6</td> *<tr align=right><td>2.5</td> <td>3</td> *<tr align=right><td>1.6</td> <td>2</td> *<tr align=right><td>1.1</td> <td>2</td> *<tr align=right><td>1.0</td> <td>1</td> *<tr align=right><td>-1.0</td> <td>-1</td> *<tr align=right><td>-1.1</td> <td>-2</td> *<tr align=right><td>-1.6</td> <td>-2</td> *<tr align=right><td>-2.5</td> <td>-3</td> *<tr align=right><td>-5.5</td> <td>-6</td> *</table> */ UP(BigDecimal.ROUND_UP), /** * Rounding mode to round towards zero. Never increments the digit * prior to a discarded fraction (i.e., truncates). Note that this * rounding mode never increases the magnitude of the calculated value. * *<p>Example: *<table border> *<tr valign=top><th>Input Number</th> * <th>Input rounded to one digit<br> with <tt>DOWN</tt> rounding *<tr align=right><td>5.5</td> <td>5</td> *<tr align=right><td>2.5</td> <td>2</td> *<tr align=right><td>1.6</td> <td>1</td> *<tr align=right><td>1.1</td> <td>1</td> *<tr align=right><td>1.0</td> <td>1</td> *<tr align=right><td>-1.0</td> <td>-1</td> *<tr align=right><td>-1.1</td> <td>-1</td> *<tr align=right><td>-1.6</td> <td>-1</td> *<tr align=right><td>-2.5</td> <td>-2</td> *<tr align=right><td>-5.5</td> <td>-5</td> *</table> */ DOWN(BigDecimal.ROUND_DOWN), /** * Rounding mode to round towards positive infinity. If the * result is positive, behaves as for <tt>RoundingMode.UP</tt>; * if negative, behaves as for <tt>RoundingMode.DOWN</tt>. Note * that this rounding mode never decreases the calculated value. * *<p>Example: *<table border> *<tr valign=top><th>Input Number</th> * <th>Input rounded to one digit<br> with <tt>CEILING</tt> rounding *<tr align=right><td>5.5</td> <td>6</td> *<tr align=right><td>2.5</td> <td>3</td> *<tr align=right><td>1.6</td> <td>2</td> *<tr align=right><td>1.1</td> <td>2</td> *<tr align=right><td>1.0</td> <td>1</td> *<tr align=right><td>-1.0</td> <td>-1</td> *<tr align=right><td>-1.1</td> <td>-1</td> *<tr align=right><td>-1.6</td> <td>-1</td> *<tr align=right><td>-2.5</td> <td>-2</td> *<tr align=right><td>-5.5</td> <td>-5</td> *</table> */ CEILING(BigDecimal.ROUND_CEILING), /** * Rounding mode to round towards negative infinity. If the * result is positive, behave as for <tt>RoundingMode.DOWN</tt>; * if negative, behave as for <tt>RoundingMode.UP</tt>. Note that * this rounding mode never increases the calculated value. * *<p>Example: *<table border> *<tr valign=top><th>Input Number</th> * <th>Input rounded to one digit<br> with <tt>FLOOR</tt> rounding *<tr align=right><td>5.5</td> <td>5</td> *<tr align=right><td>2.5</td> <td>2</td> *<tr align=right><td>1.6</td> <td>1</td> *<tr align=right><td>1.1</td> <td>1</td> *<tr align=right><td>1.0</td> <td>1</td> *<tr align=right><td>-1.0</td> <td>-1</td> *<tr align=right><td>-1.1</td> <td>-2</td> *<tr align=right><td>-1.6</td> <td>-2</td> *<tr align=right><td>-2.5</td> <td>-3</td> *<tr align=right><td>-5.5</td> <td>-6</td> *</table> */ FLOOR(BigDecimal.ROUND_FLOOR), /** * Rounding mode to round towards "nearest neighbor" * unless both neighbors are equidistant, in which case round up. * Behaves as for <tt>RoundingMode.UP</tt> if the discarded * fraction is >= 0.5; otherwise, behaves as for * <tt>RoundingMode.DOWN</tt>. Note that this is the rounding * mode commonly taught at school. * *<p>Example: *<table border> *<tr valign=top><th>Input Number</th> * <th>Input rounded to one digit<br> with <tt>HALF_UP</tt> rounding *<tr align=right><td>5.5</td> <td>6</td> *<tr align=right><td>2.5</td> <td>3</td> *<tr align=right><td>1.6</td> <td>2</td> *<tr align=right><td>1.1</td> <td>1</td> *<tr align=right><td>1.0</td> <td>1</td> *<tr align=right><td>-1.0</td> <td>-1</td> *<tr align=right><td>-1.1</td> <td>-1</td> *<tr align=right><td>-1.6</td> <td>-2</td> *<tr align=right><td>-2.5</td> <td>-3</td> *<tr align=right><td>-5.5</td> <td>-6</td> *</table> */ HALF_UP(BigDecimal.ROUND_HALF_UP), /** * Rounding mode to round towards "nearest neighbor" * unless both neighbors are equidistant, in which case round * down. Behaves as for <tt>RoundingMode.UP</tt> if the discarded * fraction is > 0.5; otherwise, behaves as for * <tt>RoundingMode.DOWN</tt>. * *<p>Example: *<table border> *<tr valign=top><th>Input Number</th> * <th>Input rounded to one digit<br> with <tt>HALF_DOWN</tt> rounding *<tr align=right><td>5.5</td> <td>5</td> *<tr align=right><td>2.5</td> <td>2</td> *<tr align=right><td>1.6</td> <td>2</td> *<tr align=right><td>1.1</td> <td>1</td> *<tr align=right><td>1.0</td> <td>1</td> *<tr align=right><td>-1.0</td> <td>-1</td> *<tr align=right><td>-1.1</td> <td>-1</td> *<tr align=right><td>-1.6</td> <td>-2</td> *<tr align=right><td>-2.5</td> <td>-2</td> *<tr align=right><td>-5.5</td> <td>-5</td> *</table> */ HALF_DOWN(BigDecimal.ROUND_HALF_DOWN), /** * Rounding mode to round towards the "nearest neighbor" * unless both neighbors are equidistant, in which case, round * towards the even neighbor. Behaves as for * <tt>RoundingMode.HALF_UP</tt> if the digit to the left of the * discarded fraction is odd; behaves as for * <tt>RoundingMode.HALF_DOWN</tt> if it's even. Note that this * is the rounding mode that statistically minimizes cumulative * error when applied repeatedly over a sequence of calculations. * It is sometimes known as "Banker's rounding," and is * chiefly used in the USA. This rounding mode is analogous to * the rounding policy used for <tt>float</tt> and <tt>double</tt> * arithmetic in Java. * *<p>Example: *<table border> *<tr valign=top><th>Input Number</th> * <th>Input rounded to one digit<br> with <tt>HALF_EVEN</tt> rounding *<tr align=right><td>5.5</td> <td>6</td> *<tr align=right><td>2.5</td> <td>2</td> *<tr align=right><td>1.6</td> <td>2</td> *<tr align=right><td>1.1</td> <td>1</td> *<tr align=right><td>1.0</td> <td>1</td> *<tr align=right><td>-1.0</td> <td>-1</td> *<tr align=right><td>-1.1</td> <td>-1</td> *<tr align=right><td>-1.6</td> <td>-2</td> *<tr align=right><td>-2.5</td> <td>-2</td> *<tr align=right><td>-5.5</td> <td>-6</td> *</table> */ HALF_EVEN(BigDecimal.ROUND_HALF_EVEN), /** * Rounding mode to assert that the requested operation has an exact * result, hence no rounding is necessary. If this rounding mode is * specified on an operation that yields an inexact result, an * <tt>ArithmeticException</tt> is thrown. *<p>Example: *<table border> *<tr valign=top><th>Input Number</th> * <th>Input rounded to one digit<br> with <tt>UNNECESSARY</tt> rounding *<tr align=right><td>5.5</td> <td>throw <tt>ArithmeticException</tt></td> *<tr align=right><td>2.5</td> <td>throw <tt>ArithmeticException</tt></td> *<tr align=right><td>1.6</td> <td>throw <tt>ArithmeticException</tt></td> *<tr align=right><td>1.1</td> <td>throw <tt>ArithmeticException</tt></td> *<tr align=right><td>1.0</td> <td>1</td> *<tr align=right><td>-1.0</td> <td>-1</td> *<tr align=right><td>-1.1</td> <td>throw <tt>ArithmeticException</tt></td> *<tr align=right><td>-1.6</td> <td>throw <tt>ArithmeticException</tt></td> *<tr align=right><td>-2.5</td> <td>throw <tt>ArithmeticException</tt></td> *<tr align=right><td>-5.5</td> <td>throw <tt>ArithmeticException</tt></td> *</table> */ UNNECESSARY(BigDecimal.ROUND_UNNECESSARY); // Corresponding BigDecimal rounding constant final int oldMode; /** * Constructor * * @param oldMode The <tt>BigDecimal</tt> constant corresponding to * this mode */ private RoundingMode(int oldMode) { this.oldMode = oldMode; } /** * Returns the <tt>RoundingMode</tt> object corresponding to a * legacy integer rounding mode constant in {@link BigDecimal}. * * @param rm legacy integer rounding mode to convert * @return <tt>RoundingMode</tt> corresponding to the given integer. * @throws IllegalArgumentException integer is out of range */ public static RoundingMode valueOf(int rm) { switch(rm) { case BigDecimal.ROUND_UP: return UP; case BigDecimal.ROUND_DOWN: return DOWN; case BigDecimal.ROUND_CEILING: return CEILING; case BigDecimal.ROUND_FLOOR: return FLOOR; case BigDecimal.ROUND_HALF_UP: return HALF_UP; case BigDecimal.ROUND_HALF_DOWN: return HALF_DOWN; case BigDecimal.ROUND_HALF_EVEN: return HALF_EVEN; case BigDecimal.ROUND_UNNECESSARY: return UNNECESSARY; default: throw new IllegalArgumentException("argument out of range"); } } }