API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.security.spec. ECFieldF2m View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

/*
 * @(#)ECFieldF2m.java	1.4 05/11/17
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */
package java.security.spec;

import java.math.BigInteger;
import java.util.Arrays;

/**
 * This immutable class defines an elliptic curve (EC)
 * characteristic 2 finite field.
 *
 * @see ECField
 *
 * @author Valerie Peng
 * @version 1.4, 11/17/05
 *
 * @since 1.5
 */
public class ECFieldF2m implements ECField {

    private int m;
    private int[] ks;
    private BigInteger rp;

    /**
     * Creates an elliptic curve characteristic 2 finite
     * field which has 2^<code>m</code> elements with normal basis.
     * @param m with 2^<code>m</code> being the number of elements.
     * @exception IllegalArgumentException if <code>m</code>
     * is not positive.
     */
    public ECFieldF2m(int m) {
	if (m <= 0) {
	    throw new IllegalArgumentException("m is not positive");
	}
	this.m = m;
	this.ks = null;
	this.rp = null;
    }

    /**
     * Creates an elliptic curve characteristic 2 finite
     * field which has 2^<code>m</code> elements with 
     * polynomial basis.
     * The reduction polynomial for this field is based
     * on <code>rp</code> whose i-th bit correspondes to
     * the i-th coefficient of the reduction polynomial.<p> 
     * Note: A valid reduction polynomial is either a 
     * trinomial (X^<code>m</code> + X^<code>k</code> + 1
     * with <code>m</code> > <code>k</code> >= 1) or a
     * pentanomial (X^<code>m</code> + X^<code>k3</code> 
     * + X^<code>k2</code> + X^<code>k1</code> + 1 with
     * <code>m</code> > <code>k3</code> > <code>k2</code> 
     * > <code>k1</code> >= 1). 
     * @param m with 2^<code>m</code> being the number of elements.
     * @param rp the BigInteger whose i-th bit corresponds to
     * the i-th coefficient of the reduction polynomial. 
     * @exception NullPointerException if <code>rp</code> is null.
     * @exception IllegalArgumentException if <code>m</code> 
     * is not positive, or <code>rp</code> does not represent 
     * a valid reduction polynomial. 
     */
    public ECFieldF2m(int m, BigInteger rp) {
	// check m and rp
        this.m = m;
        this.rp = rp;
        if (m <= 0) {
            throw new IllegalArgumentException("m is not positive");
        }
	int bitCount = this.rp.bitCount();
	if (!this.rp.testBit(0) || !this.rp.testBit(m) ||
	    ((bitCount != 3) && (bitCount != 5))) {
	    throw new IllegalArgumentException
		("rp does not represent a valid reduction polynomial");
	}
	// convert rp into ks
	BigInteger temp = this.rp.clearBit(0).clearBit(m);
	this.ks = new int[bitCount-2];
	for (int i = this.ks.length-1; i >= 0; i--) {
	    int index = temp.getLowestSetBit();
	    this.ks[i] = index;
	    temp = temp.clearBit(index);
	}
    }

    /**
     * Creates an elliptic curve characteristic 2 finite
     * field which has 2^<code>m</code> elements with
     * polynomial basis. The reduction polynomial for this
     * field is based on <code>ks</code> whose content
     * contains the order of the middle term(s) of the 
     * reduction polynomial. 
     * Note: A valid reduction polynomial is either a
     * trinomial (X^<code>m</code> + X^<code>k</code> + 1
     * with <code>m</code> > <code>k</code> >= 1) or a
     * pentanomial (X^<code>m</code> + X^<code>k3</code>
     * + X^<code>k2</code> + X^<code>k1</code> + 1 with
     * <code>m</code> > <code>k3</code> > <code>k2</code>
     * > <code>k1</code> >= 1), so <code>ks</code> should
     * have length 1 or 3.
     * @param m with 2^<code>m</code> being the number of elements. 
     * @param ks the order of the middle term(s) of the
     * reduction polynomial. Contents of this array are copied 
     * to protect against subsequent modification.
     * @exception NullPointerException if <code>ks</code> is null.
     * @exception IllegalArgumentException if<code>m</code> 
     * is not positive, or the length of <code>ks</code> 
     * is neither 1 nor 3, or values in <code>ks</code> 
     * are not between <code>m</code>-1 and 1 (inclusive) 
     * and in descending order. 
     */
    public ECFieldF2m(int m, int[] ks) {
	// check m and ks
        this.m = m;
        this.ks = (int[]) ks.clone();
	if (m <= 0) {
	    throw new IllegalArgumentException("m is not positive");
	}
	if ((this.ks.length != 1) && (this.ks.length != 3)) {
	    throw new IllegalArgumentException
		("length of ks is neither 1 nor 3");
	}
	for (int i = 0; i < this.ks.length; i++) {
	    if ((this.ks[i] < 1) || (this.ks[i] > m-1)) {
		throw new IllegalArgumentException
		    ("ks["+ i + "] is out of range");
	    }
	    if ((i != 0) && (this.ks[i] >= this.ks[i-1])) {
		throw new IllegalArgumentException
		    ("values in ks are not in descending order");
	    }
	}
	// convert ks into rp
	this.rp = BigInteger.ONE;
	this.rp = rp.setBit(m);
	for (int j = 0; j < this.ks.length; j++) {
	    rp = rp.setBit(this.ks[j]);
	}
    }
 
    /**
     * Returns the field size in bits which is <code>m</code>
     * for this characteristic 2 finite field.
     * @return the field size in bits.
     */
    public int getFieldSize() {
	return m;
    }

    /**
     * Returns the value <code>m</code> of this characteristic
     * 2 finite field.
     * @return <code>m</code> with 2^<code>m</code> being the 
     * number of elements.
     */
    public int getM() {
	return m;
    }
 
    /**
     * Returns a BigInteger whose i-th bit corresponds to the 
     * i-th coefficient of the reduction polynomial for polynomial 
     * basis or null for normal basis. 
     * @return a BigInteger whose i-th bit corresponds to the 
     * i-th coefficient of the reduction polynomial for polynomial
     * basis or null for normal basis.
     */
    public BigInteger getReductionPolynomial() {
	return rp;
    }
 
    /**
     * Returns an integer array which contains the order of the 
     * middle term(s) of the reduction polynomial for polynomial 
     * basis or null for normal basis.
     * @return an integer array which contains the order of the 
     * middle term(s) of the reduction polynomial for polynomial 
     * basis or null for normal basis. A new array is returned 
     * each time this method is called.
     */
    public int[] getMidTermsOfReductionPolynomial() {
	if (ks == null) { 
	    return null; 
	} else {
	    return (int[]) ks.clone();
	}
    }
 
    /**
     * Compares this finite field for equality with the
     * specified object. 
     * @param obj the object to be compared.
     * @return true if <code>obj</code> is an instance
     * of ECFieldF2m and both <code>m</code> and the reduction 
     * polynomial match, false otherwise.
     */
    public boolean equals(Object obj) {
	if (this == obj) return true;
	if (obj instanceof ECFieldF2m) {
	    // no need to compare rp here since ks and rp 
  	    // should be equivalent
	    return ((m == ((ECFieldF2m)obj).m) &&
		    (Arrays.equals(ks, ((ECFieldF2m) obj).ks)));
	}
	return false;
    }
 
    /**
     * Returns a hash code value for this characteristic 2 
     * finite field.
     * @return a hash code value.
     */
    public int hashCode() {
	int value = m << 5;
	value += (rp==null? 0:rp.hashCode());
	// no need to involve ks here since ks and rp 
	// should be equivalent.
	return value;
    }
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar