API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.security.spec. RSAPrivateCrtKeySpec View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

/*
 * @(#)RSAPrivateCrtKeySpec.java	1.13 05/11/17
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.security.spec;

import java.math.BigInteger;

/**
 * This class specifies an RSA private key, as defined in the PKCS#1
 * standard, using the Chinese Remainder Theorem (CRT) information values for
 * efficiency.
 *
 * @author Jan Luehe
 *
 * @version 1.13 05/11/17
 *
 * @see java.security.Key
 * @see java.security.KeyFactory
 * @see KeySpec
 * @see PKCS8EncodedKeySpec
 * @see RSAPrivateKeySpec
 * @see RSAPublicKeySpec
 */

public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec {

    private final BigInteger publicExponent;
    private final BigInteger primeP;
    private final BigInteger primeQ;
    private final BigInteger primeExponentP;
    private final BigInteger primeExponentQ;
    private final BigInteger crtCoefficient;



   /**
    * Creates a new <code>RSAPrivateCrtKeySpec</code>
    * given the modulus, publicExponent, privateExponent,
    * primeP, primeQ, primeExponentP, primeExponentQ, and
    * crtCoefficient as defined in PKCS#1.
    *
    * @param modulus the modulus n
    * @param publicExponent the public exponent e
    * @param privateExponent the private exponent d
    * @param primeP the prime factor p of n
    * @param primeQ the prime factor q of n
    * @param primeExponentP this is d mod (p-1)
    * @param primeExponentQ this is d mod (q-1)
    * @param crtCoefficient the Chinese Remainder Theorem
    * coefficient q-1 mod p
    */
    public RSAPrivateCrtKeySpec(BigInteger modulus,
				BigInteger publicExponent,
				BigInteger privateExponent,
				BigInteger primeP,
				BigInteger primeQ,
				BigInteger primeExponentP,
				BigInteger primeExponentQ,
				BigInteger crtCoefficient) {
	super(modulus, privateExponent);
	this.publicExponent = publicExponent;
	this.primeP = primeP;
	this.primeQ = primeQ;
	this.primeExponentP = primeExponentP;
	this.primeExponentQ = primeExponentQ;
	this.crtCoefficient = crtCoefficient;
    }

    /**
     * Returns the public exponent.
     *
     * @return the public exponent
     */
    public BigInteger getPublicExponent() {
	return this.publicExponent;
    }

    /**
     * Returns the primeP.

     * @return the primeP
     */
    public BigInteger getPrimeP() {
	return this.primeP;
    }

    /**
     * Returns the primeQ.
     *
     * @return the primeQ
     */
    public BigInteger getPrimeQ() {
	return this.primeQ;
    }

    /**
     * Returns the primeExponentP.
     *
     * @return the primeExponentP
     */
    public BigInteger getPrimeExponentP() {
	return this.primeExponentP;
    }

    /**
     * Returns the primeExponentQ.
     *
     * @return the primeExponentQ
     */
    public BigInteger getPrimeExponentQ() {
	return this.primeExponentQ;
    }

    /**
     * Returns the crtCoefficient.
     *
     * @return the crtCoefficient
     */
    public BigInteger getCrtCoefficient() {
	return this.crtCoefficient;
    }
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar