1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/* * @(#)RSAPrivateCrtKeySpec.java 1.13 05/11/17 * * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package java.security.spec; import java.math.BigInteger; /** * This class specifies an RSA private key, as defined in the PKCS#1 * standard, using the Chinese Remainder Theorem (CRT) information values for * efficiency. * * @author Jan Luehe * * @version 1.13 05/11/17 * * @see java.security.Key * @see java.security.KeyFactory * @see KeySpec * @see PKCS8EncodedKeySpec * @see RSAPrivateKeySpec * @see RSAPublicKeySpec */ public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec { private final BigInteger publicExponent; private final BigInteger primeP; private final BigInteger primeQ; private final BigInteger primeExponentP; private final BigInteger primeExponentQ; private final BigInteger crtCoefficient; /** * Creates a new <code>RSAPrivateCrtKeySpec</code> * given the modulus, publicExponent, privateExponent, * primeP, primeQ, primeExponentP, primeExponentQ, and * crtCoefficient as defined in PKCS#1. * * @param modulus the modulus n * @param publicExponent the public exponent e * @param privateExponent the private exponent d * @param primeP the prime factor p of n * @param primeQ the prime factor q of n * @param primeExponentP this is d mod (p-1) * @param primeExponentQ this is d mod (q-1) * @param crtCoefficient the Chinese Remainder Theorem * coefficient q-1 mod p */ public RSAPrivateCrtKeySpec(BigInteger modulus, BigInteger publicExponent, BigInteger privateExponent, BigInteger primeP, BigInteger primeQ, BigInteger primeExponentP, BigInteger primeExponentQ, BigInteger crtCoefficient) { super(modulus, privateExponent); this.publicExponent = publicExponent; this.primeP = primeP; this.primeQ = primeQ; this.primeExponentP = primeExponentP; this.primeExponentQ = primeExponentQ; this.crtCoefficient = crtCoefficient; } /** * Returns the public exponent. * * @return the public exponent */ public BigInteger getPublicExponent() { return this.publicExponent; } /** * Returns the primeP. * @return the primeP */ public BigInteger getPrimeP() { return this.primeP; } /** * Returns the primeQ. * * @return the primeQ */ public BigInteger getPrimeQ() { return this.primeQ; } /** * Returns the primeExponentP. * * @return the primeExponentP */ public BigInteger getPrimeExponentP() { return this.primeExponentP; } /** * Returns the primeExponentQ. * * @return the primeExponentQ */ public BigInteger getPrimeExponentQ() { return this.primeExponentQ; } /** * Returns the crtCoefficient. * * @return the crtCoefficient */ public BigInteger getCrtCoefficient() { return this.crtCoefficient; } }