API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.util. PriorityQueue View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

/*
 * @(#)PriorityQueue.java	1.16 06/04/21
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.util;

/**
 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
 * The elements of the priority queue are ordered according to their
 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
 * provided at queue construction time, depending on which constructor is
 * used.  A priority queue does not permit {@code null} elements.
 * A priority queue relying on natural ordering also does not permit
 * insertion of non-comparable objects (doing so may result in
 * {@code ClassCastException}).
 *
 * <p>The <em>head</em> of this queue is the <em>least</em> element
 * with respect to the specified ordering.  If multiple elements are
 * tied for least value, the head is one of those elements -- ties are
 * broken arbitrarily.  The queue retrieval operations {@code poll},
 * {@code remove}, {@code peek}, and {@code element} access the
 * element at the head of the queue.
 *
 * <p>A priority queue is unbounded, but has an internal
 * <i>capacity</i> governing the size of an array used to store the
 * elements on the queue.  It is always at least as large as the queue
 * size.  As elements are added to a priority queue, its capacity
 * grows automatically.  The details of the growth policy are not
 * specified.
 *
 * <p>This class and its iterator implement all of the
 * <em>optional</em> methods of the {@link Collection} and {@link
 * Iterator} interfaces.  The Iterator provided in method {@link
 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
 * the priority queue in any particular order. If you need ordered
 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
 *
 * <p> <strong>Note that this implementation is not synchronized.</strong>
 * Multiple threads should not access a {@code PriorityQueue}
 * instance concurrently if any of the threads modifies the queue.
 * Instead, use the thread-safe {@link
 * java.util.concurrent.PriorityBlockingQueue} class.
 *
 * <p>Implementation note: this implementation provides
 * O(log(n)) time for the enqueing and dequeing methods
 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
 * linear time for the {@code remove(Object)} and {@code contains(Object)}
 * methods; and constant time for the retrieval methods
 * ({@code peek}, {@code element}, and {@code size}).
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @since 1.5
 * @version 1.16, 04/21/06
 * @author Josh Bloch, Doug Lea
 * @param <E> the type of elements held in this collection
 */
public class PriorityQueue<E> extends AbstractQueue<E>
    implements java.io.Serializable {

    private static final long serialVersionUID = -7720805057305804111L;

    private static final int DEFAULT_INITIAL_CAPACITY = 11;

    /**
     * Priority queue represented as a balanced binary heap: the two
     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
     * priority queue is ordered by comparator, or by the elements'
     * natural ordering, if comparator is null: For each node n in the
     * heap and each descendant d of n, n <= d.  The element with the
     * lowest value is in queue[0], assuming the queue is nonempty.
     */
    private transient Object[] queue;

    /**
     * The number of elements in the priority queue.
     */
    private int size = 0;

    /**
     * The comparator, or null if priority queue uses elements'
     * natural ordering.
     */
    private final Comparator<? super E> comparator;

    /**
     * The number of times this priority queue has been
     * <i>structurally modified</i>.  See AbstractList for gory details.
     */
    private transient int modCount = 0;

    /**
     * Creates a {@code PriorityQueue} with the default initial
     * capacity (11) that orders its elements according to their
     * {@linkplain Comparable natural ordering}.
     */
    public PriorityQueue() {
        this(DEFAULT_INITIAL_CAPACITY, null);
    }

    /**
     * Creates a {@code PriorityQueue} with the specified initial
     * capacity that orders its elements according to their
     * {@linkplain Comparable natural ordering}.
     *
     * @param initialCapacity the initial capacity for this priority queue
     * @throws IllegalArgumentException if {@code initialCapacity} is less
     *         than 1
     */
    public PriorityQueue(int initialCapacity) {
        this(initialCapacity, null);
    }

    /**
     * Creates a {@code PriorityQueue} with the specified initial capacity
     * that orders its elements according to the specified comparator.
     *
     * @param  initialCapacity the initial capacity for this priority queue
     * @param  comparator the comparator that will be used to order this
     *         priority queue.  If {@code null}, the {@linkplain Comparable
     *         natural ordering} of the elements will be used.
     * @throws IllegalArgumentException if {@code initialCapacity} is
     *         less than 1
     */
    public PriorityQueue(int initialCapacity,
                         Comparator<? super E> comparator) {
        // Note: This restriction of at least one is not actually needed,
        // but continues for 1.5 compatibility
        if (initialCapacity < 1)
            throw new IllegalArgumentException();
        this.queue = new Object[initialCapacity];
        this.comparator = comparator;
    }

    /**
     * Creates a {@code PriorityQueue} containing the elements in the
     * specified collection.  If the specified collection is an instance of
     * a {@link SortedSet} or is another {@code PriorityQueue}, this
     * priority queue will be ordered according to the same ordering.
     * Otherwise, this priority queue will be ordered according to the
     * {@linkplain Comparable natural ordering} of its elements.
     *
     * @param  c the collection whose elements are to be placed
     *         into this priority queue
     * @throws ClassCastException if elements of the specified collection
     *         cannot be compared to one another according to the priority
     *         queue's ordering
     * @throws NullPointerException if the specified collection or any
     *         of its elements are null
     */
    public PriorityQueue(Collection<? extends E> c) {
        initFromCollection(c);
        if (c instanceof SortedSet)
            comparator = (Comparator<? super E>)
                ((SortedSet<? extends E>)c).comparator();
        else if (c instanceof PriorityQueue)
            comparator = (Comparator<? super E>)
                ((PriorityQueue<? extends E>)c).comparator();
        else {
            comparator = null;
            heapify();
        }
    }

    /**
     * Creates a {@code PriorityQueue} containing the elements in the
     * specified priority queue.  This priority queue will be
     * ordered according to the same ordering as the given priority
     * queue.
     *
     * @param  c the priority queue whose elements are to be placed
     *         into this priority queue
     * @throws ClassCastException if elements of {@code c} cannot be
     *         compared to one another according to {@code c}'s
     *         ordering
     * @throws NullPointerException if the specified priority queue or any
     *         of its elements are null
     */
    public PriorityQueue(PriorityQueue<? extends E> c) {
        comparator = (Comparator<? super E>)c.comparator();
        initFromCollection(c);
    }

    /**
     * Creates a {@code PriorityQueue} containing the elements in the
     * specified sorted set.   This priority queue will be ordered
     * according to the same ordering as the given sorted set.
     *
     * @param  c the sorted set whose elements are to be placed
     *         into this priority queue
     * @throws ClassCastException if elements of the specified sorted
     *         set cannot be compared to one another according to the
     *         sorted set's ordering
     * @throws NullPointerException if the specified sorted set or any
     *         of its elements are null
     */
    public PriorityQueue(SortedSet<? extends E> c) {
        comparator = (Comparator<? super E>)c.comparator();
        initFromCollection(c);
    }

    /**
     * Initializes queue array with elements from the given Collection.
     *
     * @param c the collection
     */
    private void initFromCollection(Collection<? extends E> c) {
        Object[] a = c.toArray();
        // If c.toArray incorrectly doesn't return Object[], copy it.
        if (a.getClass() != Object[].class)
            a = Arrays.copyOf(a, a.length, Object[].class);
        queue = a;
        size = a.length;
    }

    /**
     * Increases the capacity of the array.
     *
     * @param minCapacity the desired minimum capacity
     */
    private void grow(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
	int oldCapacity = queue.length;
        // Double size if small; else grow by 50%
        int newCapacity = ((oldCapacity < 64)?
                           ((oldCapacity + 1) * 2):
                           ((oldCapacity / 2) * 3));
        if (newCapacity < 0) // overflow
            newCapacity = Integer.MAX_VALUE;
        if (newCapacity < minCapacity)
            newCapacity = minCapacity;
        queue = Arrays.copyOf(queue, newCapacity);
    }

    /**
     * Inserts the specified element into this priority queue.
     *
     * @return {@code true} (as specified by {@link Collection#add})
     * @throws ClassCastException if the specified element cannot be
     *         compared with elements currently in this priority queue
     *         according to the priority queue's ordering
     * @throws NullPointerException if the specified element is null
     */
    public boolean add(E e) {
        return offer(e);
    }

    /**
     * Inserts the specified element into this priority queue.
     *
     * @return {@code true} (as specified by {@link Queue#offer})
     * @throws ClassCastException if the specified element cannot be
     *         compared with elements currently in this priority queue
     *         according to the priority queue's ordering
     * @throws NullPointerException if the specified element is null
     */
    public boolean offer(E e) {
        if (e == null)
            throw new NullPointerException();
        modCount++;
        int i = size;
        if (i >= queue.length)
            grow(i + 1);
        size = i + 1;
        if (i == 0)
            queue[0] = e;
        else
            siftUp(i, e);
        return true;
    }

    public E peek() {
        if (size == 0)
            return null;
        return (E) queue[0];
    }

    private int indexOf(Object o) {
	if (o != null) {
            for (int i = 0; i < size; i++)
                if (o.equals(queue[i]))
                    return i;
        }
        return -1;
    }

    /**
     * Removes a single instance of the specified element from this queue,
     * if it is present.  More formally, removes an element {@code e} such
     * that {@code o.equals(e)}, if this queue contains one or more such
     * elements.  Returns {@code true} if and only if this queue contained
     * the specified element (or equivalently, if this queue changed as a
     * result of the call).
     *
     * @param o element to be removed from this queue, if present
     * @return {@code true} if this queue changed as a result of the call
     */
    public boolean remove(Object o) {
	int i = indexOf(o);
	if (i == -1)
	    return false;
	else {
	    removeAt(i);
	    return true;
	}
    }

    /**
     * Version of remove using reference equality, not equals.
     * Needed by iterator.remove.
     *
     * @param o element to be removed from this queue, if present
     * @return {@code true} if removed
     */
    boolean removeEq(Object o) {
	for (int i = 0; i < size; i++) {
	    if (o == queue[i]) {
                removeAt(i);
                return true;
            }
        }
        return false;
    }

    /**
     * Returns {@code true} if this queue contains the specified element.
     * More formally, returns {@code true} if and only if this queue contains
     * at least one element {@code e} such that {@code o.equals(e)}.
     *
     * @param o object to be checked for containment in this queue
     * @return {@code true} if this queue contains the specified element
     */
    public boolean contains(Object o) {
	return indexOf(o) != -1;
    }

    /**
     * Returns an array containing all of the elements in this queue.
     * The elements are in no particular order.
     *
     * <p>The returned array will be "safe" in that no references to it are
     * maintained by this queue.  (In other words, this method must allocate
     * a new array).  The caller is thus free to modify the returned array.
     *
     * <p>This method acts as bridge between array-based and collection-based
     * APIs.
     *
     * @return an array containing all of the elements in this queue
     */
    public Object[] toArray() {
        return Arrays.copyOf(queue, size);
    }

    /**
     * Returns an array containing all of the elements in this queue; the
     * runtime type of the returned array is that of the specified array.
     * The returned array elements are in no particular order.
     * If the queue fits in the specified array, it is returned therein.
     * Otherwise, a new array is allocated with the runtime type of the
     * specified array and the size of this queue.
     *
     * <p>If the queue fits in the specified array with room to spare
     * (i.e., the array has more elements than the queue), the element in
     * the array immediately following the end of the collection is set to
     * {@code null}.
     *
     * <p>Like the {@link #toArray()} method, this method acts as bridge between
     * array-based and collection-based APIs.  Further, this method allows
     * precise control over the runtime type of the output array, and may,
     * under certain circumstances, be used to save allocation costs.
     *
     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
     * The following code can be used to dump the queue into a newly
     * allocated array of <tt>String</tt>:
     *
     * <pre>
     *     String[] y = x.toArray(new String[0]);</pre>
     *
     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
     * <tt>toArray()</tt>.
     *
     * @param a the array into which the elements of the queue are to
     *          be stored, if it is big enough; otherwise, a new array of the
     *          same runtime type is allocated for this purpose.
     * @return an array containing all of the elements in this queue
     * @throws ArrayStoreException if the runtime type of the specified array
     *         is not a supertype of the runtime type of every element in
     *         this queue
     * @throws NullPointerException if the specified array is null
     */
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(queue, size, a.getClass());
	System.arraycopy(queue, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }

    /**
     * Returns an iterator over the elements in this queue. The iterator
     * does not return the elements in any particular order.
     *
     * @return an iterator over the elements in this queue
     */
    public Iterator<E> iterator() {
        return new Itr();
    }

    private final class Itr implements Iterator<E> {
        /**
         * Index (into queue array) of element to be returned by
         * subsequent call to next.
         */
        private int cursor = 0;

        /**
         * Index of element returned by most recent call to next,
         * unless that element came from the forgetMeNot list.
         * Set to -1 if element is deleted by a call to remove.
         */
        private int lastRet = -1;

        /**
         * A queue of elements that were moved from the unvisited portion of
         * the heap into the visited portion as a result of "unlucky" element
         * removals during the iteration.  (Unlucky element removals are those
         * that require a siftup instead of a siftdown.)  We must visit all of
         * the elements in this list to complete the iteration.  We do this
         * after we've completed the "normal" iteration.
         *
         * We expect that most iterations, even those involving removals,
         * will not need to store elements in this field.
         */
        private ArrayDeque<E> forgetMeNot = null;

        /**
         * Element returned by the most recent call to next iff that
         * element was drawn from the forgetMeNot list.
         */
        private E lastRetElt = null;

        /**
         * The modCount value that the iterator believes that the backing
         * Queue should have.  If this expectation is violated, the iterator
         * has detected concurrent modification.
         */
        private int expectedModCount = modCount;

        public boolean hasNext() {
            return cursor < size ||
                (forgetMeNot != null && !forgetMeNot.isEmpty());
        }

        public E next() {
            if (expectedModCount != modCount)
                throw new ConcurrentModificationException();
            if (cursor < size)
                return (E) queue[lastRet = cursor++];
            if (forgetMeNot != null) {
                lastRet = -1;
                lastRetElt = forgetMeNot.poll();
                if (lastRetElt != null)
                    return lastRetElt;
            }
            throw new NoSuchElementException();
        }

        public void remove() {
            if (expectedModCount != modCount)
                throw new ConcurrentModificationException();
            if (lastRet != -1) {
                E moved = PriorityQueue.this.removeAt(lastRet);
                lastRet = -1;
                if (moved == null)
                    cursor--;
                else {
                    if (forgetMeNot == null)
                        forgetMeNot = new ArrayDeque<E>();
                    forgetMeNot.add(moved);
                }
            } else if (lastRetElt != null) {
                PriorityQueue.this.removeEq(lastRetElt);
                lastRetElt = null;
            } else {
                throw new IllegalStateException();
	    }
            expectedModCount = modCount;
        }
    }

    public int size() {
        return size;
    }

    /**
     * Removes all of the elements from this priority queue.
     * The queue will be empty after this call returns.
     */
    public void clear() {
        modCount++;
        for (int i = 0; i < size; i++)
            queue[i] = null;
        size = 0;
    }

    public E poll() {
        if (size == 0)
            return null;
        int s = --size;
        modCount++;
        E result = (E) queue[0];
        E x = (E) queue[s];
        queue[s] = null;
        if (s != 0)
            siftDown(0, x);
        return result;
    }

    /**
     * Removes the ith element from queue.
     *
     * Normally this method leaves the elements at up to i-1,
     * inclusive, untouched.  Under these circumstances, it returns
     * null.  Occasionally, in order to maintain the heap invariant,
     * it must swap a later element of the list with one earlier than
     * i.  Under these circumstances, this method returns the element
     * that was previously at the end of the list and is now at some
     * position before i. This fact is used by iterator.remove so as to
     * avoid missing traversing elements.
     */
    private E removeAt(int i) {
        assert i >= 0 && i < size;
        modCount++;
        int s = --size;
        if (s == i) // removed last element
            queue[i] = null;
        else {
            E moved = (E) queue[s];
            queue[s] = null;
            siftDown(i, moved);
            if (queue[i] == moved) {
                siftUp(i, moved);
                if (queue[i] != moved)
                    return moved;
            }
        }
        return null;
    }

    /**
     * Inserts item x at position k, maintaining heap invariant by
     * promoting x up the tree until it is greater than or equal to
     * its parent, or is the root.
     *
     * To simplify and speed up coercions and comparisons. the
     * Comparable and Comparator versions are separated into different
     * methods that are otherwise identical. (Similarly for siftDown.)
     *
     * @param k the position to fill
     * @param x the item to insert
     */
    private void siftUp(int k, E x) {
        if (comparator != null)
            siftUpUsingComparator(k, x);
        else
            siftUpComparable(k, x);
    }

    private void siftUpComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (key.compareTo((E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = key;
    }

    private void siftUpUsingComparator(int k, E x) {
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (comparator.compare(x, (E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = x;
    }

    /**
     * Inserts item x at position k, maintaining heap invariant by
     * demoting x down the tree repeatedly until it is less than or
     * equal to its children or is a leaf.
     *
     * @param k the position to fill
     * @param x the item to insert
     */
    private void siftDown(int k, E x) {
        if (comparator != null)
            siftDownUsingComparator(k, x);
        else
            siftDownComparable(k, x);
    }

    private void siftDownComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>)x;
        int half = size >>> 1;        // loop while a non-leaf
        while (k < half) {
            int child = (k << 1) + 1; // assume left child is least
            Object c = queue[child];
            int right = child + 1;
            if (right < size &&
                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
                c = queue[child = right];
            if (key.compareTo((E) c) <= 0)
                break;
            queue[k] = c;
            k = child;
        }
        queue[k] = key;
    }

    private void siftDownUsingComparator(int k, E x) {
        int half = size >>> 1;
        while (k < half) {
            int child = (k << 1) + 1;
            Object c = queue[child];
            int right = child + 1;
            if (right < size &&
                comparator.compare((E) c, (E) queue[right]) > 0)
                c = queue[child = right];
            if (comparator.compare(x, (E) c) <= 0)
                break;
            queue[k] = c;
            k = child;
        }
        queue[k] = x;
    }

    /**
     * Establishes the heap invariant (described above) in the entire tree,
     * assuming nothing about the order of the elements prior to the call.
     */
    private void heapify() {
        for (int i = (size >>> 1) - 1; i >= 0; i--)
            siftDown(i, (E) queue[i]);
    }

    /**
     * Returns the comparator used to order the elements in this
     * queue, or {@code null} if this queue is sorted according to
     * the {@linkplain Comparable natural ordering} of its elements.
     *
     * @return the comparator used to order this queue, or
     *         {@code null} if this queue is sorted according to the
     *         natural ordering of its elements
     */
    public Comparator<? super E> comparator() {
        return comparator;
    }

    /**
     * Saves the state of the instance to a stream (that
     * is, serializes it).
     *
     * @serialData The length of the array backing the instance is
     *             emitted (int), followed by all of its elements
     *             (each an {@code Object}) in the proper order.
     * @param s the stream
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException{
        // Write out element count, and any hidden stuff
        s.defaultWriteObject();

        // Write out array length, for compatibility with 1.5 version
        s.writeInt(Math.max(2, size + 1));

        // Write out all elements in the "proper order".
        for (int i = 0; i < size; i++)
            s.writeObject(queue[i]);
    }

    /**
     * Reconstitutes the {@code PriorityQueue} instance from a stream
     * (that is, deserializes it).
     *
     * @param s the stream
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in size, and any hidden stuff
        s.defaultReadObject();

        // Read in (and discard) array length
        s.readInt();

	queue = new Object[size];

        // Read in all elements.
        for (int i = 0; i < size; i++)
            queue[i] = s.readObject();

	// Elements are guaranteed to be in "proper order", but the
	// spec has never explained what that might be.
	heapify();
    }
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar