API Overview API Index Package Overview Direct link to this page
JDK 1.6
  javax.swing.tree. DefaultMutableTreeNode View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490

/*
 * @(#)DefaultMutableTreeNode.java	1.24 05/11/17
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package javax.swing.tree;
   // ISSUE: this class depends on nothing in AWT -- move to java.util?

import java.io.*;
import java.util.*;


/**
 * A <code>DefaultMutableTreeNode</code> is a general-purpose node in a tree data
 * structure. 
 * For examples of using default mutable tree nodes, see
 * <a
 href="http://java.sun.com/docs/books/tutorial/uiswing/components/tree.html">How to Use Trees</a>
 * in <em>The Java Tutorial.</em>
 *
 * <p>
 *
 * A tree node may have at most one parent and 0 or more children.
 * <code>DefaultMutableTreeNode</code> provides operations for examining and modifying a
 * node's parent and children and also operations for examining the tree that
 * the node is a part of.  A node's tree is the set of all nodes that can be
 * reached by starting at the node and following all the possible links to
 * parents and children.  A node with no parent is the root of its tree; a
 * node with no children is a leaf.  A tree may consist of many subtrees,
 * each node acting as the root for its own subtree.
 * <p>
 * This class provides enumerations for efficiently traversing a tree or
 * subtree in various orders or for following the path between two nodes.
 * A <code>DefaultMutableTreeNode</code> may also hold a reference to a user object, the
 * use of which is left to the user.  Asking a <code>DefaultMutableTreeNode</code> for its
 * string representation with <code>toString()</code> returns the string
 * representation of its user object.
 * <p>
 * <b>This is not a thread safe class.</b>If you intend to use
 * a DefaultMutableTreeNode (or a tree of TreeNodes) in more than one thread, you
 * need to do your own synchronizing. A good convention to adopt is
 * synchronizing on the root node of a tree.
 * <p>
 * While DefaultMutableTreeNode implements the MutableTreeNode interface and
 * will allow you to add in any implementation of MutableTreeNode not all
 * of the methods in DefaultMutableTreeNode will be applicable to all
 * MutableTreeNodes implementations. Especially with some of the enumerations
 * that are provided, using some of these methods assumes the
 * DefaultMutableTreeNode contains only DefaultMutableNode instances. All
 * of the TreeNode/MutableTreeNode methods will behave as defined no
 * matter what implementations are added.
 *
 * <p>
 * <strong>Warning:</strong>
 * Serialized objects of this class will not be compatible with
 * future Swing releases. The current serialization support is
 * appropriate for short term storage or RMI between applications running
 * the same version of Swing.  As of 1.4, support for long term storage
 * of all JavaBeans<sup><font size="-2">TM</font></sup>
 * has been added to the <code>java.beans</code> package.
 * Please see {@link java.beans.XMLEncoder}.
 *
 * @see MutableTreeNode
 *
 * @version 1.24 11/17/05
 * @author Rob Davis
 */
public class DefaultMutableTreeNode extends Object implements Cloneable,
       MutableTreeNode, Serializable
{

    /**
     * An enumeration that is always empty. This is used when an enumeration
     * of a leaf node's children is requested.
     */
    static public final Enumeration<TreeNode> EMPTY_ENUMERATION
	= new Enumeration<TreeNode>() {
	    public boolean hasMoreElements() { return false; }
	    public TreeNode nextElement() {
		throw new NoSuchElementException("No more elements");
	    }
    };

    /** this node's parent, or null if this node has no parent */
    protected MutableTreeNode   parent;

    /** array of children, may be null if this node has no children */
    protected Vector children;

    /** optional user object */
    transient protected Object	userObject;

    /** true if the node is able to have children */
    protected boolean		allowsChildren;


    /**
     * Creates a tree node that has no parent and no children, but which
     * allows children.
     */
    public DefaultMutableTreeNode() {
	this(null);
    }

    /**
     * Creates a tree node with no parent, no children, but which allows 
     * children, and initializes it with the specified user object.
     * 
     * @param userObject an Object provided by the user that constitutes
     *                   the node's data
     */
    public DefaultMutableTreeNode(Object userObject) {
	this(userObject, true);
    }

    /**
     * Creates a tree node with no parent, no children, initialized with
     * the specified user object, and that allows children only if
     * specified.
     * 
     * @param userObject an Object provided by the user that constitutes
     *        the node's data
     * @param allowsChildren if true, the node is allowed to have child
     *        nodes -- otherwise, it is always a leaf node
     */
    public DefaultMutableTreeNode(Object userObject, boolean allowsChildren) {
	super();
	parent = null;
	this.allowsChildren = allowsChildren;
	this.userObject = userObject;
    }


    //
    //  Primitives
    //

    /**
     * Removes <code>newChild</code> from its present parent (if it has a
     * parent), sets the child's parent to this node, and then adds the child
     * to this node's child array at index <code>childIndex</code>.
     * <code>newChild</code> must not be null and must not be an ancestor of
     * this node.
     *
     * @param	newChild	the MutableTreeNode to insert under this node
     * @param	childIndex	the index in this node's child array
     *				where this node is to be inserted
     * @exception	ArrayIndexOutOfBoundsException	if
     *				<code>childIndex</code> is out of bounds
     * @exception	IllegalArgumentException	if
     *				<code>newChild</code> is null or is an
     *				ancestor of this node
     * @exception	IllegalStateException	if this node does not allow
     *						children
     * @see	#isNodeDescendant
     */
    public void insert(MutableTreeNode newChild, int childIndex) {
	if (!allowsChildren) {
	    throw new IllegalStateException("node does not allow children");
	} else if (newChild == null) {
	    throw new IllegalArgumentException("new child is null");
	} else if (isNodeAncestor(newChild)) {
	    throw new IllegalArgumentException("new child is an ancestor");
	}

	    MutableTreeNode oldParent = (MutableTreeNode)newChild.getParent();

	    if (oldParent != null) {
		oldParent.remove(newChild);
	    }
	    newChild.setParent(this);
	    if (children == null) {
		children = new Vector();
	    }
	    children.insertElementAt(newChild, childIndex);
    }

    /**
     * Removes the child at the specified index from this node's children
     * and sets that node's parent to null. The child node to remove
     * must be a <code>MutableTreeNode</code>.
     *
     * @param	childIndex	the index in this node's child array
     *				of the child to remove
     * @exception	ArrayIndexOutOfBoundsException	if
     *				<code>childIndex</code> is out of bounds
     */
    public void remove(int childIndex) {
	MutableTreeNode child = (MutableTreeNode)getChildAt(childIndex);
	children.removeElementAt(childIndex);
	child.setParent(null);
    }

    /**
     * Sets this node's parent to <code>newParent</code> but does not 
     * change the parent's child array.  This method is called from
     * <code>insert()</code> and <code>remove()</code> to
     * reassign a child's parent, it should not be messaged from anywhere
     * else.
     *
     * @param	newParent	this node's new parent
     */
    public void setParent(MutableTreeNode newParent) {
	parent = newParent;
    }

    /**
     * Returns this node's parent or null if this node has no parent.
     *
     * @return	this node's parent TreeNode, or null if this node has no parent
     */
    public TreeNode getParent() {
	return parent;
    }

    /**
     * Returns the child at the specified index in this node's child array.
     *
     * @param	index	an index into this node's child array
     * @exception	ArrayIndexOutOfBoundsException	if <code>index</code>
     *						is out of bounds
     * @return	the TreeNode in this node's child array at  the specified index
     */
    public TreeNode getChildAt(int index) {
	if (children == null) {
	    throw new ArrayIndexOutOfBoundsException("node has no children");
	}
	return (TreeNode)children.elementAt(index);
    }

    /**
     * Returns the number of children of this node.
     *
     * @return	an int giving the number of children of this node
     */
    public int getChildCount() {
	if (children == null) {
	    return 0;
	} else {
	    return children.size();
	}
    }

    /**
     * Returns the index of the specified child in this node's child array.
     * If the specified node is not a child of this node, returns
     * <code>-1</code>.  This method performs a linear search and is O(n)
     * where n is the number of children.
     *
     * @param	aChild	the TreeNode to search for among this node's children
     * @exception	IllegalArgumentException	if <code>aChild</code>
     *							is null
     * @return	an int giving the index of the node in this node's child 
     *          array, or <code>-1</code> if the specified node is a not
     *          a child of this node
     */
    public int getIndex(TreeNode aChild) {
	if (aChild == null) {
	    throw new IllegalArgumentException("argument is null");
	}

	if (!isNodeChild(aChild)) {
	    return -1;
	}
	return children.indexOf(aChild);	// linear search
    }

    /**
     * Creates and returns a forward-order enumeration of this node's
     * children.  Modifying this node's child array invalidates any child
     * enumerations created before the modification.
     *
     * @return	an Enumeration of this node's children
     */
    public Enumeration children() {
	if (children == null) {
	    return EMPTY_ENUMERATION;
	} else {
	    return children.elements();
	}
    }

    /**
     * Determines whether or not this node is allowed to have children. 
     * If <code>allows</code> is false, all of this node's children are
     * removed.
     * <p>
     * Note: By default, a node allows children.
     *
     * @param	allows	true if this node is allowed to have children
     */
    public void setAllowsChildren(boolean allows) {
	if (allows != allowsChildren) {
	    allowsChildren = allows;
	    if (!allowsChildren) {
		removeAllChildren();
	    }
	}
    }

    /**
     * Returns true if this node is allowed to have children.
     *
     * @return	true if this node allows children, else false
     */
    public boolean getAllowsChildren() {
	return allowsChildren;
    }

    /**
     * Sets the user object for this node to <code>userObject</code>.
     *
     * @param	userObject	the Object that constitutes this node's 
     *                          user-specified data
     * @see	#getUserObject
     * @see	#toString
     */
    public void setUserObject(Object userObject) {
	this.userObject = userObject;
    }

    /**
     * Returns this node's user object.
     *
     * @return	the Object stored at this node by the user
     * @see	#setUserObject
     * @see	#toString
     */
    public Object getUserObject() {
	return userObject;
    }


    //
    //  Derived methods
    //

    /**
     * Removes the subtree rooted at this node from the tree, giving this
     * node a null parent.  Does nothing if this node is the root of its
     * tree.
     */
    public void removeFromParent() {
	MutableTreeNode parent = (MutableTreeNode)getParent();
	if (parent != null) {
	    parent.remove(this);
	}
    }

    /**
     * Removes <code>aChild</code> from this node's child array, giving it a
     * null parent.
     *
     * @param	aChild	a child of this node to remove
     * @exception	IllegalArgumentException	if <code>aChild</code>
     *					is null or is not a child of this node
     */
    public void remove(MutableTreeNode aChild) {
	if (aChild == null) {
	    throw new IllegalArgumentException("argument is null");
	}

	if (!isNodeChild(aChild)) {
	    throw new IllegalArgumentException("argument is not a child");
	}
	remove(getIndex(aChild));	// linear search
    }

    /**
     * Removes all of this node's children, setting their parents to null.
     * If this node has no children, this method does nothing.
     */
    public void removeAllChildren() {
	for (int i = getChildCount()-1; i >= 0; i--) {
	    remove(i);
	}
    }

    /**
     * Removes <code>newChild</code> from its parent and makes it a child of
     * this node by adding it to the end of this node's child array.
     *
     * @see		#insert
     * @param	newChild	node to add as a child of this node
     * @exception	IllegalArgumentException    if <code>newChild</code>
     *						is null
     * @exception	IllegalStateException	if this node does not allow
     *						children
     */
    public void add(MutableTreeNode newChild) {
	if(newChild != null && newChild.getParent() == this)
	    insert(newChild, getChildCount() - 1);
	else
	    insert(newChild, getChildCount());
    }



    //
    //  Tree Queries
    //

    /**
     * Returns true if <code>anotherNode</code> is an ancestor of this node
     * -- if it is this node, this node's parent, or an ancestor of this
     * node's parent.  (Note that a node is considered an ancestor of itself.)
     * If <code>anotherNode</code> is null, this method returns false.  This
     * operation is at worst O(h) where h is the distance from the root to
     * this node.
     *
     * @see		#isNodeDescendant
     * @see		#getSharedAncestor
     * @param	anotherNode	node to test as an ancestor of this node
     * @return	true if this node is a descendant of <code>anotherNode</code>
     */
    public boolean isNodeAncestor(TreeNode anotherNode) {
	if (anotherNode == null) {
	    return false;
	}

	TreeNode ancestor = this;

	do {
	    if (ancestor == anotherNode) {
		return true;
	    }
	} while((ancestor = ancestor.getParent()) != null);

	return false;
    }

    /**
     * Returns true if <code>anotherNode</code> is a descendant of this node
     * -- if it is this node, one of this node's children, or a descendant of
     * one of this node's children.  Note that a node is considered a
     * descendant of itself.  If <code>anotherNode</code> is null, returns
     * false.  This operation is at worst O(h) where h is the distance from the
     * root to <code>anotherNode</code>.
     *
     * @see	#isNodeAncestor
     * @see	#getSharedAncestor
     * @param	anotherNode	node to test as descendant of this node
     * @return	true if this node is an ancestor of <code>anotherNode</code>
     */
    public boolean isNodeDescendant(DefaultMutableTreeNode anotherNode) {
	if (anotherNode == null)
	    return false;

	return anotherNode.isNodeAncestor(this);
    }

    /**
     * Returns the nearest common ancestor to this node and <code>aNode</code>.
     * Returns null, if no such ancestor exists -- if this node and
     * <code>aNode</code> are in different trees or if <code>aNode</code> is
     * null.  A node is considered an ancestor of itself.
     *
     * @see	#isNodeAncestor
     * @see	#isNodeDescendant
     * @param	aNode	node to find common ancestor with
     * @return	nearest ancestor common to this node and <code>aNode</code>,
     *		or null if none
     */
    public TreeNode getSharedAncestor(DefaultMutableTreeNode aNode) {
	if (aNode == this) {
	    return this;
	} else if (aNode == null) {
	    return null;
	}

	int		level1, level2, diff;
	TreeNode	node1, node2;
	
	level1 = getLevel();
	level2 = aNode.getLevel();
	
	if (level2 > level1) {
	    diff = level2 - level1;
	    node1 = aNode;
	    node2 = this;
	} else {
	    diff = level1 - level2;
	    node1 = this;
	    node2 = aNode;
	}

	// Go up the tree until the nodes are at the same level
	while (diff > 0) {
	    node1 = node1.getParent();
	    diff--;
	}
	
	// Move up the tree until we find a common ancestor.  Since we know
	// that both nodes are at the same level, we won't cross paths
	// unknowingly (if there is a common ancestor, both nodes hit it in
	// the same iteration).
	
	do {
	    if (node1 == node2) {
		return node1;
	    }
	    node1 = node1.getParent();
	    node2 = node2.getParent();
	} while (node1 != null);// only need to check one -- they're at the
	// same level so if one is null, the other is
	
	if (node1 != null || node2 != null) {
	    throw new Error ("nodes should be null");
	}
	
	return null;
    }


    /**
     * Returns true if and only if <code>aNode</code> is in the same tree
     * as this node.  Returns false if <code>aNode</code> is null.
     *
     * @see	#getSharedAncestor
     * @see	#getRoot
     * @return	true if <code>aNode</code> is in the same tree as this node;
     *		false if <code>aNode</code> is null
     */
    public boolean isNodeRelated(DefaultMutableTreeNode aNode) {
	return (aNode != null) && (getRoot() == aNode.getRoot());
    }


    /**
     * Returns the depth of the tree rooted at this node -- the longest
     * distance from this node to a leaf.  If this node has no children,
     * returns 0.  This operation is much more expensive than
     * <code>getLevel()</code> because it must effectively traverse the entire
     * tree rooted at this node.
     *
     * @see	#getLevel
     * @return	the depth of the tree whose root is this node
     */
    public int getDepth() {
	Object	last = null;
	Enumeration	enum_ = breadthFirstEnumeration();
	
	while (enum_.hasMoreElements()) {
	    last = enum_.nextElement();
	}
	
	if (last == null) {
	    throw new Error ("nodes should be null");
	}
	
	return ((DefaultMutableTreeNode)last).getLevel() - getLevel();
    }



    /**
     * Returns the number of levels above this node -- the distance from
     * the root to this node.  If this node is the root, returns 0.
     *
     * @see	#getDepth
     * @return	the number of levels above this node
     */
    public int getLevel() {
	TreeNode ancestor;
	int levels = 0;

	ancestor = this;
	while((ancestor = ancestor.getParent()) != null){
	    levels++;
	}

	return levels;
    }


    /**
      * Returns the path from the root, to get to this node.  The last
      * element in the path is this node.
      *
      * @return an array of TreeNode objects giving the path, where the
      *         first element in the path is the root and the last
      *         element is this node.
      */
    public TreeNode[] getPath() {
	return getPathToRoot(this, 0);
    }

    /**
     * Builds the parents of node up to and including the root node,
     * where the original node is the last element in the returned array.
     * The length of the returned array gives the node's depth in the
     * tree.
     * 
     * @param aNode  the TreeNode to get the path for
     * @param depth  an int giving the number of steps already taken towards
     *        the root (on recursive calls), used to size the returned array
     * @return an array of TreeNodes giving the path from the root to the
     *         specified node 
     */
    protected TreeNode[] getPathToRoot(TreeNode aNode, int depth) {
	TreeNode[]              retNodes;

	/* Check for null, in case someone passed in a null node, or
	   they passed in an element that isn't rooted at root. */
	if(aNode == null) {
	    if(depth == 0)
		return null;
	    else
		retNodes = new TreeNode[depth];
	}
	else {
	    depth++;
	    retNodes = getPathToRoot(aNode.getParent(), depth);
	    retNodes[retNodes.length - depth] = aNode;
	}
	return retNodes;
    }

    /**
      * Returns the user object path, from the root, to get to this node.
      * If some of the TreeNodes in the path have null user objects, the
      * returned path will contain nulls.
      */
    public Object[] getUserObjectPath() {
	TreeNode[]          realPath = getPath();
	Object[]            retPath = new Object[realPath.length];

	for(int counter = 0; counter < realPath.length; counter++)
	    retPath[counter] = ((DefaultMutableTreeNode)realPath[counter])
		               .getUserObject();
	return retPath;
    }

    /**
     * Returns the root of the tree that contains this node.  The root is
     * the ancestor with a null parent.
     *
     * @see	#isNodeAncestor
     * @return	the root of the tree that contains this node
     */
    public TreeNode getRoot() {
	TreeNode ancestor = this;
	TreeNode previous;

	do {
	    previous = ancestor;
	    ancestor = ancestor.getParent();
	} while (ancestor != null);

	return previous;
    }


    /**
     * Returns true if this node is the root of the tree.  The root is
     * the only node in the tree with a null parent; every tree has exactly
     * one root.
     *
     * @return	true if this node is the root of its tree
     */
    public boolean isRoot() {
	return getParent() == null;
    }


    /**
     * Returns the node that follows this node in a preorder traversal of this
     * node's tree.  Returns null if this node is the last node of the
     * traversal.  This is an inefficient way to traverse the entire tree; use
     * an enumeration, instead.
     *
     * @see	#preorderEnumeration
     * @return	the node that follows this node in a preorder traversal, or
     *		null if this node is last
     */
    public DefaultMutableTreeNode getNextNode() {
	if (getChildCount() == 0) {
	    // No children, so look for nextSibling
	    DefaultMutableTreeNode nextSibling = getNextSibling();

	    if (nextSibling == null) {
		DefaultMutableTreeNode aNode = (DefaultMutableTreeNode)getParent();

		do {
		    if (aNode == null) {
			return null;
		    }

		    nextSibling = aNode.getNextSibling();
		    if (nextSibling != null) {
			return nextSibling;
		    }

		    aNode = (DefaultMutableTreeNode)aNode.getParent();
		} while(true);
	    } else {
		return nextSibling;
	    }
	} else {
	    return (DefaultMutableTreeNode)getChildAt(0);
	}
    }


    /**
     * Returns the node that precedes this node in a preorder traversal of
     * this node's tree.  Returns <code>null</code> if this node is the
     * first node of the traversal -- the root of the tree. 
     * This is an inefficient way to
     * traverse the entire tree; use an enumeration, instead.
     *
     * @see	#preorderEnumeration
     * @return	the node that precedes this node in a preorder traversal, or
     *		null if this node is the first
     */
    public DefaultMutableTreeNode getPreviousNode() {
	DefaultMutableTreeNode previousSibling;
	DefaultMutableTreeNode myParent = (DefaultMutableTreeNode)getParent();

	if (myParent == null) {
	    return null;
	}

	previousSibling = getPreviousSibling();

	if (previousSibling != null) {
	    if (previousSibling.getChildCount() == 0)
		return previousSibling;
	    else
		return previousSibling.getLastLeaf();
	} else {
	    return myParent;
	}
    }

    /**
     * Creates and returns an enumeration that traverses the subtree rooted at
     * this node in preorder.  The first node returned by the enumeration's
     * <code>nextElement()</code> method is this node.<P>
     *
     * Modifying the tree by inserting, removing, or moving a node invalidates
     * any enumerations created before the modification.
     *
     * @see	#postorderEnumeration
     * @return	an enumeration for traversing the tree in preorder
     */
    public Enumeration preorderEnumeration() {
	return new PreorderEnumeration(this);
    }

    /**
     * Creates and returns an enumeration that traverses the subtree rooted at
     * this node in postorder.  The first node returned by the enumeration's
     * <code>nextElement()</code> method is the leftmost leaf.  This is the
     * same as a depth-first traversal.<P>
     *
     * Modifying the tree by inserting, removing, or moving a node invalidates
     * any enumerations created before the modification.
     *
     * @see	#depthFirstEnumeration
     * @see	#preorderEnumeration
     * @return	an enumeration for traversing the tree in postorder
     */
    public Enumeration postorderEnumeration() {
	return new PostorderEnumeration(this);
    }

    /**
     * Creates and returns an enumeration that traverses the subtree rooted at
     * this node in breadth-first order.  The first node returned by the
     * enumeration's <code>nextElement()</code> method is this node.<P>
     *
     * Modifying the tree by inserting, removing, or moving a node invalidates
     * any enumerations created before the modification.
     *
     * @see	#depthFirstEnumeration
     * @return	an enumeration for traversing the tree in breadth-first order
     */
    public Enumeration breadthFirstEnumeration() {
	return new BreadthFirstEnumeration(this);
    }

    /**
     * Creates and returns an enumeration that traverses the subtree rooted at
     * this node in depth-first order.  The first node returned by the
     * enumeration's <code>nextElement()</code> method is the leftmost leaf.
     * This is the same as a postorder traversal.<P>
     *
     * Modifying the tree by inserting, removing, or moving a node invalidates
     * any enumerations created before the modification.
     *
     * @see	#breadthFirstEnumeration
     * @see	#postorderEnumeration
     * @return	an enumeration for traversing the tree in depth-first order
     */
    public Enumeration depthFirstEnumeration() {
	return postorderEnumeration();
    }

    /**
     * Creates and returns an enumeration that follows the path from
     * <code>ancestor</code> to this node.  The enumeration's
     * <code>nextElement()</code> method first returns <code>ancestor</code>,
     * then the child of <code>ancestor</code> that is an ancestor of this
     * node, and so on, and finally returns this node.  Creation of the
     * enumeration is O(m) where m is the number of nodes between this node
     * and <code>ancestor</code>, inclusive.  Each <code>nextElement()</code>
     * message is O(1).<P>
     *
     * Modifying the tree by inserting, removing, or moving a node invalidates
     * any enumerations created before the modification.
     *
     * @see		#isNodeAncestor
     * @see		#isNodeDescendant
     * @exception	IllegalArgumentException if <code>ancestor</code> is
     *						not an ancestor of this node
     * @return	an enumeration for following the path from an ancestor of
     *		this node to this one
     */
    public Enumeration pathFromAncestorEnumeration(TreeNode ancestor) {
	return new PathBetweenNodesEnumeration(ancestor, this);
    }


    //
    //  Child Queries
    //

    /**
     * Returns true if <code>aNode</code> is a child of this node.  If
     * <code>aNode</code> is null, this method returns false.
     *
     * @return	true if <code>aNode</code> is a child of this node; false if 
     *  		<code>aNode</code> is null
     */
    public boolean isNodeChild(TreeNode aNode) {
	boolean retval;

	if (aNode == null) {
	    retval = false;
	} else {
	    if (getChildCount() == 0) {
		retval = false;
	    } else {
		retval = (aNode.getParent() == this);
	    }
	}

	return retval;
    }


    /**
     * Returns this node's first child.  If this node has no children,
     * throws NoSuchElementException.
     *
     * @return	the first child of this node
     * @exception	NoSuchElementException	if this node has no children
     */
    public TreeNode getFirstChild() {
	if (getChildCount() == 0) {
	    throw new NoSuchElementException("node has no children");
	}
	return getChildAt(0);
    }


    /**
     * Returns this node's last child.  If this node has no children,
     * throws NoSuchElementException.
     *
     * @return	the last child of this node
     * @exception	NoSuchElementException	if this node has no children
     */
    public TreeNode getLastChild() {
	if (getChildCount() == 0) {
	    throw new NoSuchElementException("node has no children");
	}
	return getChildAt(getChildCount()-1);
    }


    /**
     * Returns the child in this node's child array that immediately
     * follows <code>aChild</code>, which must be a child of this node.  If
     * <code>aChild</code> is the last child, returns null.  This method
     * performs a linear search of this node's children for
     * <code>aChild</code> and is O(n) where n is the number of children; to
     * traverse the entire array of children, use an enumeration instead.
     *
     * @see		#children
     * @exception	IllegalArgumentException if <code>aChild</code> is
     *					null or is not a child of this node
     * @return	the child of this node that immediately follows
     *		<code>aChild</code>
     */
    public TreeNode getChildAfter(TreeNode aChild) {
	if (aChild == null) {
	    throw new IllegalArgumentException("argument is null");
	}

	int index = getIndex(aChild);		// linear search

	if (index == -1) {
	    throw new IllegalArgumentException("node is not a child");
	}

	if (index < getChildCount() - 1) {
	    return getChildAt(index + 1);
	} else {
	    return null;
	}
    }


    /**
     * Returns the child in this node's child array that immediately
     * precedes <code>aChild</code>, which must be a child of this node.  If
     * <code>aChild</code> is the first child, returns null.  This method
     * performs a linear search of this node's children for <code>aChild</code>
     * and is O(n) where n is the number of children.
     *
     * @exception	IllegalArgumentException if <code>aChild</code> is null
     *						or is not a child of this node
     * @return	the child of this node that immediately precedes
     *		<code>aChild</code>
     */
    public TreeNode getChildBefore(TreeNode aChild) {
	if (aChild == null) {
	    throw new IllegalArgumentException("argument is null");
	}

	int index = getIndex(aChild);		// linear search

	if (index == -1) {
	    throw new IllegalArgumentException("argument is not a child");
	}

	if (index > 0) {
	    return getChildAt(index - 1);
	} else {
	    return null;
	}
    }


    //
    //  Sibling Queries
    //


    /**
     * Returns true if <code>anotherNode</code> is a sibling of (has the
     * same parent as) this node.  A node is its own sibling.  If
     * <code>anotherNode</code> is null, returns false.
     *
     * @param	anotherNode	node to test as sibling of this node
     * @return	true if <code>anotherNode</code> is a sibling of this node
     */
    public boolean isNodeSibling(TreeNode anotherNode) {
	boolean retval;

	if (anotherNode == null) {
	    retval = false;
	} else if (anotherNode == this) {
	    retval = true;
	} else {
	    TreeNode  myParent = getParent();
	    retval = (myParent != null && myParent == anotherNode.getParent());

	    if (retval && !((DefaultMutableTreeNode)getParent())
		           .isNodeChild(anotherNode)) {
		throw new Error("sibling has different parent");
	    }
	}

	return retval;
    }


    /**
     * Returns the number of siblings of this node.  A node is its own sibling
     * (if it has no parent or no siblings, this method returns
     * <code>1</code>).
     *
     * @return	the number of siblings of this node
     */
    public int getSiblingCount() {
	TreeNode myParent = getParent();

	if (myParent == null) {
	    return 1;
	} else {
	    return myParent.getChildCount();
	}
    }


    /**
     * Returns the next sibling of this node in the parent's children array.
     * Returns null if this node has no parent or is the parent's last child.
     * This method performs a linear search that is O(n) where n is the number
     * of children; to traverse the entire array, use the parent's child
     * enumeration instead.
     *
     * @see	#children
     * @return	the sibling of this node that immediately follows this node
     */
    public DefaultMutableTreeNode getNextSibling() {
	DefaultMutableTreeNode retval;

	DefaultMutableTreeNode myParent = (DefaultMutableTreeNode)getParent();

	if (myParent == null) {
	    retval = null;
	} else {
	    retval = (DefaultMutableTreeNode)myParent.getChildAfter(this);	// linear search
	}

	if (retval != null && !isNodeSibling(retval)) {
	    throw new Error("child of parent is not a sibling");
	}

	return retval;
    }


    /**
     * Returns the previous sibling of this node in the parent's children
     * array.  Returns null if this node has no parent or is the parent's
     * first child.  This method performs a linear search that is O(n) where n
     * is the number of children.
     *
     * @return	the sibling of this node that immediately precedes this node
     */
    public DefaultMutableTreeNode getPreviousSibling() {
	DefaultMutableTreeNode retval;

	DefaultMutableTreeNode myParent = (DefaultMutableTreeNode)getParent();

	if (myParent == null) {
	    retval = null;
	} else {
	    retval = (DefaultMutableTreeNode)myParent.getChildBefore(this);	// linear search
	}

	if (retval != null && !isNodeSibling(retval)) {
	    throw new Error("child of parent is not a sibling");
	}

	return retval;
    }



    //
    //  Leaf Queries
    //

    /**
     * Returns true if this node has no children.  To distinguish between
     * nodes that have no children and nodes that <i>cannot</i> have
     * children (e.g. to distinguish files from empty directories), use this
     * method in conjunction with <code>getAllowsChildren</code>
     *
     * @see	#getAllowsChildren
     * @return	true if this node has no children
     */
    public boolean isLeaf() {
	return (getChildCount() == 0);
    }


    /**
     * Finds and returns the first leaf that is a descendant of this node --
     * either this node or its first child's first leaf.
     * Returns this node if it is a leaf.
     *
     * @see	#isLeaf
     * @see	#isNodeDescendant
     * @return	the first leaf in the subtree rooted at this node
     */
    public DefaultMutableTreeNode getFirstLeaf() {
	DefaultMutableTreeNode node = this;

	while (!node.isLeaf()) {
	    node = (DefaultMutableTreeNode)node.getFirstChild();
	}

	return node;
    }


    /**
     * Finds and returns the last leaf that is a descendant of this node --
     * either this node or its last child's last leaf. 
     * Returns this node if it is a leaf.
     *
     * @see	#isLeaf
     * @see	#isNodeDescendant
     * @return	the last leaf in the subtree rooted at this node
     */
    public DefaultMutableTreeNode getLastLeaf() {
	DefaultMutableTreeNode node = this;

	while (!node.isLeaf()) {
	    node = (DefaultMutableTreeNode)node.getLastChild();
	}

	return node;
    }


    /**
     * Returns the leaf after this node or null if this node is the
     * last leaf in the tree.
     * <p>
     * In this implementation of the <code>MutableNode</code> interface,
     * this operation is very inefficient. In order to determine the
     * next node, this method first performs a linear search in the 
     * parent's child-list in order to find the current node. 
     * <p>
     * That implementation makes the operation suitable for short
     * traversals from a known position. But to traverse all of the 
     * leaves in the tree, you should use <code>depthFirstEnumeration</code>
     * to enumerate the nodes in the tree and use <code>isLeaf</code>
     * on each node to determine which are leaves.
     *
     * @see	#depthFirstEnumeration
     * @see	#isLeaf
     * @return	returns the next leaf past this node
     */
    public DefaultMutableTreeNode getNextLeaf() {
	DefaultMutableTreeNode nextSibling;
	DefaultMutableTreeNode myParent = (DefaultMutableTreeNode)getParent();

	if (myParent == null)
	    return null;

	nextSibling = getNextSibling();	// linear search

	if (nextSibling != null)
	    return nextSibling.getFirstLeaf();

	return myParent.getNextLeaf();	// tail recursion
    }


    /**
     * Returns the leaf before this node or null if this node is the
     * first leaf in the tree.
     * <p>
     * In this implementation of the <code>MutableNode</code> interface,
     * this operation is very inefficient. In order to determine the
     * previous node, this method first performs a linear search in the 
     * parent's child-list in order to find the current node. 
     * <p>
     * That implementation makes the operation suitable for short
     * traversals from a known position. But to traverse all of the 
     * leaves in the tree, you should use <code>depthFirstEnumeration</code>
     * to enumerate the nodes in the tree and use <code>isLeaf</code>
     * on each node to determine which are leaves.
     *
     * @see		#depthFirstEnumeration
     * @see		#isLeaf
     * @return	returns the leaf before this node
     */
    public DefaultMutableTreeNode getPreviousLeaf() {
	DefaultMutableTreeNode previousSibling;
	DefaultMutableTreeNode myParent = (DefaultMutableTreeNode)getParent();

	if (myParent == null)
	    return null;

	previousSibling = getPreviousSibling();	// linear search

	if (previousSibling != null)
	    return previousSibling.getLastLeaf();

	return myParent.getPreviousLeaf();		// tail recursion
    }


    /**
     * Returns the total number of leaves that are descendants of this node.
     * If this node is a leaf, returns <code>1</code>.  This method is O(n)
     * where n is the number of descendants of this node.
     *
     * @see	#isNodeAncestor
     * @return	the number of leaves beneath this node
     */
    public int getLeafCount() {
	int count = 0;

	TreeNode node;
	Enumeration enum_ = breadthFirstEnumeration(); // order matters not

	while (enum_.hasMoreElements()) {
	    node = (TreeNode)enum_.nextElement();
	    if (node.isLeaf()) {
		count++;
	    }
	}

	if (count < 1) {
	    throw new Error("tree has zero leaves");
	}

	return count;
    }


    //
    //  Overrides
    //

    /**
     * Returns the result of sending <code>toString()</code> to this node's
     * user object, or null if this node has no user object.
     *
     * @see	#getUserObject
     */
    public String toString() {
	if (userObject == null) {
	    return null;
	} else {
	    return userObject.toString();
	}
    }

    /**
     * Overridden to make clone public.  Returns a shallow copy of this node;
     * the new node has no parent or children and has a reference to the same
     * user object, if any.
     *
     * @return	a copy of this node
     */
    public Object clone() {
	DefaultMutableTreeNode newNode = null;

	try {
	    newNode = (DefaultMutableTreeNode)super.clone();

	    // shallow copy -- the new node has no parent or children
	    newNode.children = null;
	    newNode.parent = null;

	} catch (CloneNotSupportedException e) {
	    // Won't happen because we implement Cloneable
	    throw new Error(e.toString());
	}

	return newNode;
    }


    // Serialization support.  
    private void writeObject(ObjectOutputStream s) throws IOException {
	Object[]             tValues;

	s.defaultWriteObject();
	// Save the userObject, if its Serializable.
	if(userObject != null && userObject instanceof Serializable) {
	    tValues = new Object[2];
	    tValues[0] = "userObject";
	    tValues[1] = userObject;
	}
	else
	    tValues = new Object[0];
	s.writeObject(tValues);
    }

    private void readObject(ObjectInputStream s) 
	throws IOException, ClassNotFoundException {
	Object[]      tValues;

	s.defaultReadObject();

	tValues = (Object[])s.readObject();

	if(tValues.length > 0 && tValues[0].equals("userObject"))
	    userObject = tValues[1];
    }

    final class PreorderEnumeration implements Enumeration<TreeNode> {
	protected Stack stack;

	public PreorderEnumeration(TreeNode rootNode) {
	    super();
	    Vector v = new Vector(1);
	    v.addElement(rootNode);	// PENDING: don't really need a vector
	    stack = new Stack();
	    stack.push(v.elements());
	}

	public boolean hasMoreElements() {
	    return (!stack.empty() &&
		    ((Enumeration)stack.peek()).hasMoreElements());
	}

	public TreeNode nextElement() {
	    Enumeration	enumer = (Enumeration)stack.peek();
	    TreeNode	node = (TreeNode)enumer.nextElement();
	    Enumeration	children = node.children();

	    if (!enumer.hasMoreElements()) {
		stack.pop();
	    }
	    if (children.hasMoreElements()) {
		stack.push(children);
	    }
	    return node;
	}

    }  // End of class PreorderEnumeration



    final class PostorderEnumeration implements Enumeration<TreeNode> {
	protected TreeNode root;
	protected Enumeration<TreeNode> children;
	protected Enumeration<TreeNode> subtree;

	public PostorderEnumeration(TreeNode rootNode) {
	    super();
	    root = rootNode;
	    children = root.children();
	    subtree = EMPTY_ENUMERATION;
	}

	public boolean hasMoreElements() {
	    return root != null;
	}

	public TreeNode nextElement() {
	    TreeNode retval;

	    if (subtree.hasMoreElements()) {
		retval = subtree.nextElement();
	    } else if (children.hasMoreElements()) {
		subtree = new PostorderEnumeration(
				(TreeNode)children.nextElement());
		retval = subtree.nextElement();
	    } else {
		retval = root;
		root = null;
	    }

	    return retval;
	}

    }  // End of class PostorderEnumeration



    final class BreadthFirstEnumeration implements Enumeration<TreeNode> {
	protected Queue	queue;

	public BreadthFirstEnumeration(TreeNode rootNode) {
	    super();
	    Vector v = new Vector(1);
	    v.addElement(rootNode);	// PENDING: don't really need a vector
	    queue = new Queue();
	    queue.enqueue(v.elements());
	}

	public boolean hasMoreElements() {
	    return (!queue.isEmpty() &&
		    ((Enumeration)queue.firstObject()).hasMoreElements());
	}

	public TreeNode nextElement() {
	    Enumeration	enumer = (Enumeration)queue.firstObject();
	    TreeNode	node = (TreeNode)enumer.nextElement();
	    Enumeration	children = node.children();

	    if (!enumer.hasMoreElements()) {
		queue.dequeue();
	    }
	    if (children.hasMoreElements()) {
		queue.enqueue(children);
	    }
	    return node;
	}


	// A simple queue with a linked list data structure.
	final class Queue {
	    QNode head;	// null if empty
	    QNode tail;

	    final class QNode {
		public Object	object;
		public QNode	next;	// null if end
		public QNode(Object object, QNode next) {
		    this.object = object;
		    this.next = next;
		}
	    }

	    public void enqueue(Object anObject) {
		if (head == null) {
		    head = tail = new QNode(anObject, null);
		} else {
		    tail.next = new QNode(anObject, null);
		    tail = tail.next;
		}
	    }

	    public Object dequeue() {
		if (head == null) {
		    throw new NoSuchElementException("No more elements");
		}

		Object retval = head.object;
		QNode oldHead = head;
		head = head.next;
		if (head == null) {
		    tail = null;
		} else {
		    oldHead.next = null;
		}
		return retval;
	    }

	    public Object firstObject() {
		if (head == null) {
		    throw new NoSuchElementException("No more elements");
		}

		return head.object;
	    }

	    public boolean isEmpty() {
		return head == null;
	    }

	} // End of class Queue

    }  // End of class BreadthFirstEnumeration



    final class PathBetweenNodesEnumeration implements Enumeration<TreeNode> {
	protected Stack<TreeNode> stack;

	public PathBetweenNodesEnumeration(TreeNode ancestor,
					   TreeNode descendant)
	{
	    super();

	    if (ancestor == null || descendant == null) {
		throw new IllegalArgumentException("argument is null");
	    }

	    TreeNode current;

	    stack = new Stack<TreeNode>();
	    stack.push(descendant);

	    current = descendant;
	    while (current != ancestor) {
		current = current.getParent();
		if (current == null && descendant != ancestor) {
		    throw new IllegalArgumentException("node " + ancestor +
				" is not an ancestor of " + descendant);
		}
		stack.push(current);
	    }
	}

	public boolean hasMoreElements() {
	    return stack.size() > 0;
	}

	public TreeNode nextElement() {
	    try {
		return stack.pop();
	    } catch (EmptyStackException e) {
		throw new NoSuchElementException("No more elements");
	    }
	}

    } // End of class PathBetweenNodesEnumeration



} // End of class DefaultMutableTreeNode

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar