/*
* @(#)AlphaComposite.java 1.50 06/04/07
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package java.awt;
import java.awt.image.ColorModel;
import sun.java2d.SunCompositeContext;
/**
* The <code>AlphaComposite</code> class implements basic alpha
* compositing rules for combining source and destination colors
* to achieve blending and transparency effects with graphics and
* images.
* The specific rules implemented by this class are the basic set
* of 12 rules described in
* T. Porter and T. Duff, "Compositing Digital Images", SIGGRAPH 84,
* 253-259.
* The rest of this documentation assumes some familiarity with the
* definitions and concepts outlined in that paper.
*
* <p>
* This class extends the standard equations defined by Porter and
* Duff to include one additional factor.
* An instance of the <code>AlphaComposite</code> class can contain
* an alpha value that is used to modify the opacity or coverage of
* every source pixel before it is used in the blending equations.
*
* <p>
* It is important to note that the equations defined by the Porter
* and Duff paper are all defined to operate on color components
* that are premultiplied by their corresponding alpha components.
* Since the <code>ColorModel</code> and <code>Raster</code> classes
* allow the storage of pixel data in either premultiplied or
* non-premultiplied form, all input data must be normalized into
* premultiplied form before applying the equations and all results
* might need to be adjusted back to the form required by the destination
* before the pixel values are stored.
*
* <p>
* Also note that this class defines only the equations
* for combining color and alpha values in a purely mathematical
* sense. The accurate application of its equations depends
* on the way the data is retrieved from its sources and stored
* in its destinations.
* See <a href="#caveats">Implementation Caveats</a>
* for further information.
*
* <p>
* The following factors are used in the description of the blending
* equation in the Porter and Duff paper:
*
* <blockquote>
* <table summary="layout">
* <tr><th align=left>Factor <th align=left>Definition
* <tr><td><em>A<sub>s</sub></em><td>the alpha component of the source pixel
* <tr><td><em>C<sub>s</sub></em><td>a color component of the source pixel in premultiplied form
* <tr><td><em>A<sub>d</sub></em><td>the alpha component of the destination pixel
* <tr><td><em>C<sub>d</sub></em><td>a color component of the destination pixel in premultiplied form
* <tr><td><em>F<sub>s</sub></em><td>the fraction of the source pixel that contributes to the output
* <tr><td><em>F<sub>d</sub></em><td>the fraction of the destination pixel that contributes
* to the output
* <tr><td><em>A<sub>r</sub></em><td>the alpha component of the result
* <tr><td><em>C<sub>r</sub></em><td>a color component of the result in premultiplied form
* </table>
* </blockquote>
*
* <p>
* Using these factors, Porter and Duff define 12 ways of choosing
* the blending factors <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> to
* produce each of 12 desirable visual effects.
* The equations for determining <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em>
* are given in the descriptions of the 12 static fields
* that specify visual effects.
* For example,
* the description for
* <a href="#SRC_OVER"><code>SRC_OVER</code></a>
* specifies that <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>).
* Once a set of equations for determining the blending factors is
* known they can then be applied to each pixel to produce a result
* using the following set of equations:
*
* <pre>
* <em>F<sub>s</sub></em> = <em>f</em>(<em>A<sub>d</sub></em>)
* <em>F<sub>d</sub></em> = <em>f</em>(<em>A<sub>s</sub></em>)
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>A<sub>d</sub></em>*<em>F<sub>d</sub></em>
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>C<sub>d</sub></em>*<em>F<sub>d</sub></em></pre>
*
* <p>
* The following factors will be used to discuss our extensions to
* the blending equation in the Porter and Duff paper:
*
* <blockquote>
* <table summary="layout">
* <tr><th align=left>Factor <th align=left>Definition
* <tr><td><em>C<sub>sr</sub></em> <td>one of the raw color components of the source pixel
* <tr><td><em>C<sub>dr</sub></em> <td>one of the raw color components of the destination pixel
* <tr><td><em>A<sub>ac</sub></em> <td>the "extra" alpha component from the AlphaComposite instance
* <tr><td><em>A<sub>sr</sub></em> <td>the raw alpha component of the source pixel
* <tr><td><em>A<sub>dr</sub></em><td>the raw alpha component of the destination pixel
* <tr><td><em>A<sub>df</sub></em> <td>the final alpha component stored in the destination
* <tr><td><em>C<sub>df</sub></em> <td>the final raw color component stored in the destination
* </table>
*</blockquote>
*
* <h3>Preparing Inputs</h3>
*
* <p>
* The <code>AlphaComposite</code> class defines an additional alpha
* value that is applied to the source alpha.
* This value is applied as if an implicit SRC_IN rule were first
* applied to the source pixel against a pixel with the indicated
* alpha by multiplying both the raw source alpha and the raw
* source colors by the alpha in the <code>AlphaComposite</code>.
* This leads to the following equation for producing the alpha
* used in the Porter and Duff blending equation:
*
* <pre>
* <em>A<sub>s</sub></em> = <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em> </pre>
*
* All of the raw source color components need to be multiplied
* by the alpha in the <code>AlphaComposite</code> instance.
* Additionally, if the source was not in premultiplied form
* then the color components also need to be multiplied by the
* source alpha.
* Thus, the equation for producing the source color components
* for the Porter and Duff equation depends on whether the source
* pixels are premultiplied or not:
*
* <pre>
* <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em> (if source is not premultiplied)
* <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>ac</sub></em> (if source is premultiplied) </pre>
*
* No adjustment needs to be made to the destination alpha:
*
* <pre>
* <em>A<sub>d</sub></em> = <em>A<sub>dr</sub></em> </pre>
*
* <p>
* The destination color components need to be adjusted only if
* they are not in premultiplied form:
*
* <pre>
* <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em> * <em>A<sub>d</sub></em> (if destination is not premultiplied)
* <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em> (if destination is premultiplied) </pre>
*
* <h3>Applying the Blending Equation</h3>
*
* <p>
* The adjusted <em>A<sub>s</sub></em>, <em>A<sub>d</sub></em>,
* <em>C<sub>s</sub></em>, and <em>C<sub>d</sub></em> are used in the standard
* Porter and Duff equations to calculate the blending factors
* <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> and then the resulting
* premultiplied components <em>A<sub>r</sub></em> and <em>C<sub>r</sub></em>.
*
* <p>
* <h3>Preparing Results</h3>
*
* <p>
* The results only need to be adjusted if they are to be stored
* back into a destination buffer that holds data that is not
* premultiplied, using the following equations:
*
* <pre>
* <em>A<sub>df</sub></em> = <em>A<sub>r</sub></em>
* <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em> (if dest is premultiplied)
* <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em> / <em>A<sub>r</sub></em> (if dest is not premultiplied) </pre>
*
* Note that since the division is undefined if the resulting alpha
* is zero, the division in that case is omitted to avoid the "divide
* by zero" and the color components are left as
* all zeros.
*
* <p>
* <h3>Performance Considerations</h3>
*
* <p>
* For performance reasons, it is preferrable that
* <code>Raster</code> objects passed to the <code>compose</code>
* method of a {@link CompositeContext} object created by the
* <code>AlphaComposite</code> class have premultiplied data.
* If either the source <code>Raster</code>
* or the destination <code>Raster</code>
* is not premultiplied, however,
* appropriate conversions are performed before and after the compositing
* operation.
*
* <h3><a name="caveats">Implementation Caveats</a></h3>
*
* <ul>
* <li>
* Many sources, such as some of the opaque image types listed
* in the <code>BufferedImage</code> class, do not store alpha values
* for their pixels. Such sources supply an alpha of 1.0 for
* all of their pixels.
*
* <p>
* <li>
* Many destinations also have no place to store the alpha values
* that result from the blending calculations performed by this class.
* Such destinations thus implicitly discard the resulting
* alpha values that this class produces.
* It is recommended that such destinations should treat their stored
* color values as non-premultiplied and divide the resulting color
* values by the resulting alpha value before storing the color
* values and discarding the alpha value.
*
* <p>
* <li>
* The accuracy of the results depends on the manner in which pixels
* are stored in the destination.
* An image format that provides at least 8 bits of storage per color
* and alpha component is at least adequate for use as a destination
* for a sequence of a few to a dozen compositing operations.
* An image format with fewer than 8 bits of storage per component
* is of limited use for just one or two compositing operations
* before the rounding errors dominate the results.
* An image format
* that does not separately store
* color components is not a
* good candidate for any type of translucent blending.
* For example, <code>BufferedImage.TYPE_BYTE_INDEXED</code>
* should not be used as a destination for a blending operation
* because every operation
* can introduce large errors, due to
* the need to choose a pixel from a limited palette to match the
* results of the blending equations.
*
* <p>
* <li>
* Nearly all formats store pixels as discrete integers rather than
* the floating point values used in the reference equations above.
* The implementation can either scale the integer pixel
* values into floating point values in the range 0.0 to 1.0 or
* use slightly modified versions of the equations
* that operate entirely in the integer domain and yet produce
* analogous results to the reference equations.
*
* <p>
* Typically the integer values are related to the floating point
* values in such a way that the integer 0 is equated
* to the floating point value 0.0 and the integer
* 2^<em>n</em>-1 (where <em>n</em> is the number of bits
* in the representation) is equated to 1.0.
* For 8-bit representations, this means that 0x00
* represents 0.0 and 0xff represents
* 1.0.
*
* <p>
* <li>
* The internal implementation can approximate some of the equations
* and it can also eliminate some steps to avoid unnecessary operations.
* For example, consider a discrete integer image with non-premultiplied
* alpha values that uses 8 bits per component for storage.
* The stored values for a
* nearly transparent darkened red might be:
*
* <pre>
* (A, R, G, B) = (0x01, 0xb0, 0x00, 0x00)</pre>
*
* <p>
* If integer math were being used and this value were being
* composited in
* <a href="#SRC"><code>SRC</code></a>
* mode with no extra alpha, then the math would
* indicate that the results were (in integer format):
*
* <pre>
* (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
*
* <p>
* Note that the intermediate values, which are always in premultiplied
* form, would only allow the integer red component to be either 0x00
* or 0x01. When we try to store this result back into a destination
* that is not premultiplied, dividing out the alpha will give us
* very few choices for the non-premultiplied red value.
* In this case an implementation that performs the math in integer
* space without shortcuts is likely to end up with the final pixel
* values of:
*
* <pre>
* (A, R, G, B) = (0x01, 0xff, 0x00, 0x00)</pre>
*
* <p>
* (Note that 0x01 divided by 0x01 gives you 1.0, which is equivalent
* to the value 0xff in an 8-bit storage format.)
*
* <p>
* Alternately, an implementation that uses floating point math
* might produce more accurate results and end up returning to the
* original pixel value with little, if any, roundoff error.
* Or, an implementation using integer math might decide that since
* the equations boil down to a virtual NOP on the color values
* if performed in a floating point space, it can transfer the
* pixel untouched to the destination and avoid all the math entirely.
*
* <p>
* These implementations all attempt to honor the
* same equations, but use different tradeoffs of integer and
* floating point math and reduced or full equations.
* To account for such differences, it is probably best to
* expect only that the premultiplied form of the results to
* match between implementations and image formats. In this
* case both answers, expressed in premultiplied form would
* equate to:
*
* <pre>
* (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
*
* <p>
* and thus they would all match.
*
* <p>
* <li>
* Because of the technique of simplifying the equations for
* calculation efficiency, some implementations might perform
* differently when encountering result alpha values of 0.0
* on a non-premultiplied destination.
* Note that the simplification of removing the divide by alpha
* in the case of the SRC rule is technically not valid if the
* denominator (alpha) is 0.
* But, since the results should only be expected to be accurate
* when viewed in premultiplied form, a resulting alpha of 0
* essentially renders the resulting color components irrelevant
* and so exact behavior in this case should not be expected.
* </ul>
* @see Composite
* @see CompositeContext
* @version 10 Feb 1997
*/
public final class AlphaComposite implements Composite {
/**
* Both the color and the alpha of the destination are cleared
* (Porter-Duff Clear rule).
* Neither the source nor the destination is used as input.
*<p>
* <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 0, thus:
*<pre>
* <em>A<sub>r</sub></em> = 0
* <em>C<sub>r</sub></em> = 0
*</pre>
*/
public static final int CLEAR = 1;
/**
* The source is copied to the destination
* (Porter-Duff Source rule).
* The destination is not used as input.
*<p>
* <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = 0, thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>
*</pre>
*/
public static final int SRC = 2;
/**
* The destination is left untouched
* (Porter-Duff Destination rule).
*<p>
* <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 1, thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>
* <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>
*</pre>
* @since 1.4
*/
public static final int DST = 9;
// Note that DST was added in 1.4 so it is numbered out of order...
/**
* The source is composited over the destination
* (Porter-Duff Source Over Destination rule).
*<p>
* <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
*</pre>
*/
public static final int SRC_OVER = 3;
/**
* The destination is composited over the source and
* the result replaces the destination
* (Porter-Duff Destination Over Source rule).
*<p>
* <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 1, thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>
*</pre>
*/
public static final int DST_OVER = 4;
/**
* The part of the source lying inside of the destination replaces
* the destination
* (Porter-Duff Source In Destination rule).
*<p>
* <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = 0, thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em>
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em>
*</pre>
*/
public static final int SRC_IN = 5;
/**
* The part of the destination lying inside of the source
* replaces the destination
* (Porter-Duff Destination In Source rule).
*<p>
* <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em>
* <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
*</pre>
*/
public static final int DST_IN = 6;
/**
* The part of the source lying outside of the destination
* replaces the destination
* (Porter-Duff Source Held Out By Destination rule).
*<p>
* <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 0, thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
*</pre>
*/
public static final int SRC_OUT = 7;
/**
* The part of the destination lying outside of the source
* replaces the destination
* (Porter-Duff Destination Held Out By Source rule).
*<p>
* <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
* <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
*</pre>
*/
public static final int DST_OUT = 8;
// Rule 9 is DST which is defined above where it fits into the
// list logically, rather than numerically
//
// public static final int DST = 9;
/**
* The part of the source lying inside of the destination
* is composited onto the destination
* (Porter-Duff Source Atop Destination rule).
*<p>
* <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) = <em>A<sub>d</sub></em>
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
*</pre>
* @since 1.4
*/
public static final int SRC_ATOP = 10;
/**
* The part of the destination lying inside of the source
* is composited over the source and replaces the destination
* (Porter-Duff Destination Atop Source rule).
*<p>
* <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em> = <em>A<sub>s</sub></em>
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
*</pre>
* @since 1.4
*/
public static final int DST_ATOP = 11;
/**
* The part of the source that lies outside of the destination
* is combined with the part of the destination that lies outside
* of the source
* (Porter-Duff Source Xor Destination rule).
*<p>
* <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
*<pre>
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
*</pre>
* @since 1.4
*/
public static final int XOR = 12;
/**
* <code>AlphaComposite</code> object that implements the opaque CLEAR rule
* with an alpha of 1.0f.
* @see #CLEAR
*/
public static final AlphaComposite Clear = new AlphaComposite(CLEAR);
/**
* <code>AlphaComposite</code> object that implements the opaque SRC rule
* with an alpha of 1.0f.
* @see #SRC
*/
public static final AlphaComposite Src = new AlphaComposite(SRC);
/**
* <code>AlphaComposite</code> object that implements the opaque DST rule
* with an alpha of 1.0f.
* @see #DST
* @since 1.4
*/
public static final AlphaComposite Dst = new AlphaComposite(DST);
/**
* <code>AlphaComposite</code> object that implements the opaque SRC_OVER rule
* with an alpha of 1.0f.
* @see #SRC_OVER
*/
public static final AlphaComposite SrcOver = new AlphaComposite(SRC_OVER);
/**
* <code>AlphaComposite</code> object that implements the opaque DST_OVER rule
* with an alpha of 1.0f.
* @see #DST_OVER
*/
public static final AlphaComposite DstOver = new AlphaComposite(DST_OVER);
/**
* <code>AlphaComposite</code> object that implements the opaque SRC_IN rule
* with an alpha of 1.0f.
* @see #SRC_IN
*/
public static final AlphaComposite SrcIn = new AlphaComposite(SRC_IN);
/**
* <code>AlphaComposite</code> object that implements the opaque DST_IN rule
* with an alpha of 1.0f.
* @see #DST_IN
*/
public static final AlphaComposite DstIn = new AlphaComposite(DST_IN);
/**
* <code>AlphaComposite</code> object that implements the opaque SRC_OUT rule
* with an alpha of 1.0f.
* @see #SRC_OUT
*/
public static final AlphaComposite SrcOut = new AlphaComposite(SRC_OUT);
/**
* <code>AlphaComposite</code> object that implements the opaque DST_OUT rule
* with an alpha of 1.0f.
* @see #DST_OUT
*/
public static final AlphaComposite DstOut = new AlphaComposite(DST_OUT);
/**
* <code>AlphaComposite</code> object that implements the opaque SRC_ATOP rule
* with an alpha of 1.0f.
* @see #SRC_ATOP
* @since 1.4
*/
public static final AlphaComposite SrcAtop = new AlphaComposite(SRC_ATOP);
/**
* <code>AlphaComposite</code> object that implements the opaque DST_ATOP rule
* with an alpha of 1.0f.
* @see #DST_ATOP
* @since 1.4
*/
public static final AlphaComposite DstAtop = new AlphaComposite(DST_ATOP);
/**
* <code>AlphaComposite</code> object that implements the opaque XOR rule
* with an alpha of 1.0f.
* @see #XOR
* @since 1.4
*/
public static final AlphaComposite Xor = new AlphaComposite(XOR);
private static final int MIN_RULE = CLEAR;
private static final int MAX_RULE = XOR;
float extraAlpha;
int rule;
private AlphaComposite(int rule) {
this(rule, 1.0f);
}
private AlphaComposite(int rule, float alpha) {
if (alpha < 0.0f || alpha > 1.0f) {
throw new IllegalArgumentException("alpha value out of range");
}
if (rule < MIN_RULE || rule > MAX_RULE) {
throw new IllegalArgumentException("unknown composite rule");
}
this.rule = rule;
this.extraAlpha = alpha;
}
/**
* Creates an <code>AlphaComposite</code> object with the specified rule.
* @param rule the compositing rule
* @throws IllegalArgumentException if <code>rule</code> is not one of
* the following: {@link #CLEAR}, {@link #SRC}, {@link #DST},
* {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
* {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
* {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
*/
public static AlphaComposite getInstance(int rule) {
switch (rule) {
case CLEAR:
return Clear;
case SRC:
return Src;
case DST:
return Dst;
case SRC_OVER:
return SrcOver;
case DST_OVER:
return DstOver;
case SRC_IN:
return SrcIn;
case DST_IN:
return DstIn;
case SRC_OUT:
return SrcOut;
case DST_OUT:
return DstOut;
case SRC_ATOP:
return SrcAtop;
case DST_ATOP:
return DstAtop;
case XOR:
return Xor;
default:
throw new IllegalArgumentException("unknown composite rule");
}
}
/**
* Creates an <code>AlphaComposite</code> object with the specified rule and
* the constant alpha to multiply with the alpha of the source.
* The source is multiplied with the specified alpha before being composited
* with the destination.
* @param rule the compositing rule
* @param alpha the constant alpha to be multiplied with the alpha of
* the source. <code>alpha</code> must be a floating point number in the
* inclusive range [0.0, 1.0].
* @throws IllegalArgumentException if
* <code>alpha</code> is less than 0.0 or greater than 1.0, or if
* <code>rule</code> is not one of
* the following: {@link #CLEAR}, {@link #SRC}, {@link #DST},
* {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
* {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
* {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
*/
public static AlphaComposite getInstance(int rule, float alpha) {
if (alpha == 1.0f) {
return getInstance(rule);
}
return new AlphaComposite(rule, alpha);
}
/**
* Creates a context for the compositing operation.
* The context contains state that is used in performing
* the compositing operation.
* @param srcColorModel the {@link ColorModel} of the source
* @param dstColorModel the <code>ColorModel</code> of the destination
* @return the <code>CompositeContext</code> object to be used to perform
* compositing operations.
*/
public CompositeContext createContext(ColorModel srcColorModel,
ColorModel dstColorModel,
RenderingHints hints) {
return new SunCompositeContext(this, srcColorModel, dstColorModel);
}
/**
* Returns the alpha value of this <code>AlphaComposite</code>. If this
* <code>AlphaComposite</code> does not have an alpha value, 1.0 is returned.
* @return the alpha value of this <code>AlphaComposite</code>.
*/
public float getAlpha() {
return extraAlpha;
}
/**
* Returns the compositing rule of this <code>AlphaComposite</code>.
* @return the compositing rule of this <code>AlphaComposite</code>.
*/
public int getRule() {
return rule;
}
/**
* Returns a similar <code>AlphaComposite</code> object that uses
* the specified compositing rule.
* If this object already uses the specified compositing rule,
* this object is returned.
* @return an <code>AlphaComposite</code> object derived from
* this object that uses the specified compositing rule.
* @param rule the compositing rule
* @throws IllegalArgumentException if
* <code>rule</code> is not one of
* the following: {@link #CLEAR}, {@link #SRC}, {@link #DST},
* {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
* {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
* {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
* @since 1.6
*/
public AlphaComposite derive(int rule) {
return (this.rule == rule)
? this
: getInstance(rule, this.extraAlpha);
}
/**
* Returns a similar <code>AlphaComposite</code> object that uses
* the specified alpha value.
* If this object already has the specified alpha value,
* this object is returned.
* @return an <code>AlphaComposite</code> object derived from
* this object that uses the specified alpha value.
* @param alpha the constant alpha to be multiplied with the alpha of
* the source. <code>alpha</code> must be a floating point number in the
* inclusive range [0.0, 1.0].
* @throws IllegalArgumentException if
* <code>alpha</code> is less than 0.0 or greater than 1.0
* @since 1.6
*/
public AlphaComposite derive(float alpha) {
return (this.extraAlpha == alpha)
? this
: getInstance(this.rule, alpha);
}
/**
* Returns the hashcode for this composite.
* @return a hash code for this composite.
*/
public int hashCode() {
return (Float.floatToIntBits(extraAlpha) * 31 + rule);
}
/**
* Determines whether the specified object is equal to this
* <code>AlphaComposite</code>.
* <p>
* The result is <code>true</code> if and only if
* the argument is not <code>null</code> and is an
* <code>AlphaComposite</code> object that has the same
* compositing rule and alpha value as this object.
*
* @param obj the <code>Object</code> to test for equality
* @return <code>true</code> if <code>obj</code> equals this
* <code>AlphaComposite</code>; <code>false</code> otherwise.
*/
public boolean equals(Object obj) {
if (!(obj instanceof AlphaComposite)) {
return false;
}
AlphaComposite ac = (AlphaComposite) obj;
if (rule != ac.rule) {
return false;
}
if (extraAlpha != ac.extraAlpha) {
return false;
}
return true;
}
}