API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.awt. AlphaComposite View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

/*
 * @(#)AlphaComposite.java	1.50 06/04/07
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.awt;

import java.awt.image.ColorModel;
import sun.java2d.SunCompositeContext;

/**
 * The <code>AlphaComposite</code> class implements basic alpha 
 * compositing rules for combining source and destination colors
 * to achieve blending and transparency effects with graphics and
 * images.
 * The specific rules implemented by this class are the basic set
 * of 12 rules described in
 * T. Porter and T. Duff, "Compositing Digital Images", SIGGRAPH 84,
 * 253-259.
 * The rest of this documentation assumes some familiarity with the
 * definitions and concepts outlined in that paper.
 *
 * <p>
 * This class extends the standard equations defined by Porter and
 * Duff to include one additional factor.
 * An instance of the <code>AlphaComposite</code> class can contain
 * an alpha value that is used to modify the opacity or coverage of
 * every source pixel before it is used in the blending equations.
 *
 * <p>
 * It is important to note that the equations defined by the Porter
 * and Duff paper are all defined to operate on color components
 * that are premultiplied by their corresponding alpha components.
 * Since the <code>ColorModel</code> and <code>Raster</code> classes
 * allow the storage of pixel data in either premultiplied or
 * non-premultiplied form, all input data must be normalized into
 * premultiplied form before applying the equations and all results
 * might need to be adjusted back to the form required by the destination
 * before the pixel values are stored.
 *
 * <p>
 * Also note that this class defines only the equations
 * for combining color and alpha values in a purely mathematical
 * sense. The accurate application of its equations depends
 * on the way the data is retrieved from its sources and stored
 * in its destinations.
 * See <a href="#caveats">Implementation Caveats</a> 
 * for further information.
 *
 * <p>
 * The following factors are used in the description of the blending
 * equation in the Porter and Duff paper:
 *
 * <blockquote>
 * <table summary="layout">
 * <tr><th align=left>Factor&nbsp;&nbsp;<th align=left>Definition
 * <tr><td><em>A<sub>s</sub></em><td>the alpha component of the source pixel
 * <tr><td><em>C<sub>s</sub></em><td>a color component of the source pixel in premultiplied form
 * <tr><td><em>A<sub>d</sub></em><td>the alpha component of the destination pixel
 * <tr><td><em>C<sub>d</sub></em><td>a color component of the destination pixel in premultiplied form
 * <tr><td><em>F<sub>s</sub></em><td>the fraction of the source pixel that contributes to the output
 * <tr><td><em>F<sub>d</sub></em><td>the fraction of the destination pixel that contributes
 * to the output
 * <tr><td><em>A<sub>r</sub></em><td>the alpha component of the result
 * <tr><td><em>C<sub>r</sub></em><td>a color component of the result in premultiplied form
 * </table>
 * </blockquote>
 *
 * <p>
 * Using these factors, Porter and Duff define 12 ways of choosing
 * the blending factors <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> to
 * produce each of 12 desirable visual effects.
 * The equations for determining <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em>
 * are given in the descriptions of the 12 static fields
 * that specify visual effects.
 * For example, 
 * the description for 
 * <a href="#SRC_OVER"><code>SRC_OVER</code></a>
 * specifies that <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>).
 * Once a set of equations for determining the blending factors is
 * known they can then be applied to each pixel to produce a result
 * using the following set of equations:
 *
 * <pre>
 * 	<em>F<sub>s</sub></em> = <em>f</em>(<em>A<sub>d</sub></em>)
 * 	<em>F<sub>d</sub></em> = <em>f</em>(<em>A<sub>s</sub></em>)
 * 	<em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>A<sub>d</sub></em>*<em>F<sub>d</sub></em>
 * 	<em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>C<sub>d</sub></em>*<em>F<sub>d</sub></em></pre>
 *
 * <p>
 * The following factors will be used to discuss our extensions to
 * the blending equation in the Porter and Duff paper:
 *
 * <blockquote>
 * <table summary="layout">
 * <tr><th align=left>Factor&nbsp;&nbsp;<th align=left>Definition
 * <tr><td><em>C<sub>sr</sub></em> <td>one of the raw color components of the source pixel
 * <tr><td><em>C<sub>dr</sub></em> <td>one of the raw color components of the destination pixel
 * <tr><td><em>A<sub>ac</sub></em>  <td>the "extra" alpha component from the AlphaComposite instance
 * <tr><td><em>A<sub>sr</sub></em> <td>the raw alpha component of the source pixel
 * <tr><td><em>A<sub>dr</sub></em><td>the raw alpha component of the destination pixel
 * <tr><td><em>A<sub>df</sub></em> <td>the final alpha component stored in the destination
 * <tr><td><em>C<sub>df</sub></em> <td>the final raw color component stored in the destination
 * </table>
 *</blockquote>
 *
 * <h3>Preparing Inputs</h3>
 *
 * <p>
 * The <code>AlphaComposite</code> class defines an additional alpha
 * value that is applied to the source alpha.
 * This value is applied as if an implicit SRC_IN rule were first
 * applied to the source pixel against a pixel with the indicated
 * alpha by multiplying both the raw source alpha and the raw
 * source colors by the alpha in the <code>AlphaComposite</code>.
 * This leads to the following equation for producing the alpha
 * used in the Porter and Duff blending equation:
 *
 * <pre>
 * 	<em>A<sub>s</sub></em> = <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em> </pre>
 *
 * All of the raw source color components need to be multiplied
 * by the alpha in the <code>AlphaComposite</code> instance.
 * Additionally, if the source was not in premultiplied form
 * then the color components also need to be multiplied by the
 * source alpha.
 * Thus, the equation for producing the source color components
 * for the Porter and Duff equation depends on whether the source
 * pixels are premultiplied or not:
 *
 * <pre>
 * 	<em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em>     (if source is not premultiplied)
 * 	<em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>ac</sub></em>           (if source is premultiplied) </pre>
 *
 * No adjustment needs to be made to the destination alpha:
 *
 * <pre>
 * 	<em>A<sub>d</sub></em> = <em>A<sub>dr</sub></em> </pre>
 *
 * <p>
 * The destination color components need to be adjusted only if
 * they are not in premultiplied form:
 *
 * <pre>
 * 	<em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em> * <em>A<sub>d</sub></em>    (if destination is not premultiplied) 
 * 	<em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em>         (if destination is premultiplied) </pre>
 *
 * <h3>Applying the Blending Equation</h3>
 *
 * <p>
 * The adjusted <em>A<sub>s</sub></em>, <em>A<sub>d</sub></em>,
 * <em>C<sub>s</sub></em>, and <em>C<sub>d</sub></em> are used in the standard
 * Porter and Duff equations to calculate the blending factors
 * <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> and then the resulting
 * premultiplied components <em>A<sub>r</sub></em> and <em>C<sub>r</sub></em>.
 *
 * <p>
 * <h3>Preparing Results</h3>
 *
 * <p>
 * The results only need to be adjusted if they are to be stored
 * back into a destination buffer that holds data that is not
 * premultiplied, using the following equations:
 *
 * <pre>
 * 	<em>A<sub>df</sub></em> = <em>A<sub>r</sub></em>
 * 	<em>C<sub>df</sub></em> = <em>C<sub>r</sub></em>                 (if dest is premultiplied)
 * 	<em>C<sub>df</sub></em> = <em>C<sub>r</sub></em> / <em>A<sub>r</sub></em>            (if dest is not premultiplied) </pre>
 *
 * Note that since the division is undefined if the resulting alpha
 * is zero, the division in that case is omitted to avoid the "divide
 * by zero" and the color components are left as
 * all zeros.
 *
 * <p>
 * <h3>Performance Considerations</h3>
 *
 * <p>
 * For performance reasons, it is preferrable that 
 * <code>Raster</code> objects passed to the <code>compose</code>
 * method of a {@link CompositeContext} object created by the 
 * <code>AlphaComposite</code> class have premultiplied data.
 * If either the source <code>Raster</code>
 * or the destination <code>Raster</code>
 * is not premultiplied, however,
 * appropriate conversions are performed before and after the compositing
 * operation.
 *
 * <h3><a name="caveats">Implementation Caveats</a></h3>
 *
 * <ul>
 * <li>
 * Many sources, such as some of the opaque image types listed
 * in the <code>BufferedImage</code> class, do not store alpha values
 * for their pixels.  Such sources supply an alpha of 1.0 for
 * all of their pixels.
 *
 * <p>
 * <li>
 * Many destinations also have no place to store the alpha values
 * that result from the blending calculations performed by this class.
 * Such destinations thus implicitly discard the resulting
 * alpha values that this class produces.
 * It is recommended that such destinations should treat their stored
 * color values as non-premultiplied and divide the resulting color
 * values by the resulting alpha value before storing the color
 * values and discarding the alpha value.
 *
 * <p>
 * <li>
 * The accuracy of the results depends on the manner in which pixels
 * are stored in the destination.
 * An image format that provides at least 8 bits of storage per color
 * and alpha component is at least adequate for use as a destination
 * for a sequence of a few to a dozen compositing operations.
 * An image format with fewer than 8 bits of storage per component
 * is of limited use for just one or two compositing operations
 * before the rounding errors dominate the results.
 * An image format
 * that does not separately store 
 * color components is not a
 * good candidate for any type of translucent blending.
 * For example, <code>BufferedImage.TYPE_BYTE_INDEXED</code>
 * should not be used as a destination for a blending operation
 * because every operation 
 * can introduce large errors, due to
 * the need to choose a pixel from a limited palette to match the
 * results of the blending equations.
 *
 * <p>
 * <li>
 * Nearly all formats store pixels as discrete integers rather than
 * the floating point values used in the reference equations above.
 * The implementation can either scale the integer pixel
 * values into floating point values in the range 0.0 to 1.0 or 
 * use slightly modified versions of the equations
 * that operate entirely in the integer domain and yet produce
 * analogous results to the reference equations.
 *
 * <p>
 * Typically the integer values are related to the floating point
 * values in such a way that the integer 0 is equated
 * to the floating point value 0.0 and the integer
 * 2^<em>n</em>-1 (where <em>n</em> is the number of bits
 * in the representation) is equated to 1.0.
 * For 8-bit representations, this means that 0x00
 * represents 0.0 and 0xff represents
 * 1.0.
 *
 * <p>
 * <li>
 * The internal implementation can approximate some of the equations
 * and it can also eliminate some steps to avoid unnecessary operations.
 * For example, consider a discrete integer image with non-premultiplied
 * alpha values that uses 8 bits per component for storage.
 * The stored values for a
 * nearly transparent darkened red might be:
 *
 * <pre>
 *    (A, R, G, B) = (0x01, 0xb0, 0x00, 0x00)</pre>
 *
 * <p>
 * If integer math were being used and this value were being
 * composited in
 * <a href="#SRC"><code>SRC</code></a>
 * mode with no extra alpha, then the math would
 * indicate that the results were (in integer format):
 *
 * <pre>
 *    (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
 *
 * <p>
 * Note that the intermediate values, which are always in premultiplied
 * form, would only allow the integer red component to be either 0x00
 * or 0x01.  When we try to store this result back into a destination
 * that is not premultiplied, dividing out the alpha will give us
 * very few choices for the non-premultiplied red value.
 * In this case an implementation that performs the math in integer
 * space without shortcuts is likely to end up with the final pixel
 * values of:
 *
 * <pre>
 *    (A, R, G, B) = (0x01, 0xff, 0x00, 0x00)</pre>
 *
 * <p>
 * (Note that 0x01 divided by 0x01 gives you 1.0, which is equivalent
 * to the value 0xff in an 8-bit storage format.)
 *
 * <p>
 * Alternately, an implementation that uses floating point math
 * might produce more accurate results and end up returning to the
 * original pixel value with little, if any, roundoff error.
 * Or, an implementation using integer math might decide that since
 * the equations boil down to a virtual NOP on the color values
 * if performed in a floating point space, it can transfer the
 * pixel untouched to the destination and avoid all the math entirely.
 *
 * <p>
 * These implementations all attempt to honor the
 * same equations, but use different tradeoffs of integer and
 * floating point math and reduced or full equations.
 * To account for such differences, it is probably best to
 * expect only that the premultiplied form of the results to
 * match between implementations and image formats.  In this
 * case both answers, expressed in premultiplied form would
 * equate to:
 *
 * <pre>
 *    (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
 *
 * <p>
 * and thus they would all match.
 *
 * <p>
 * <li>
 * Because of the technique of simplifying the equations for
 * calculation efficiency, some implementations might perform
 * differently when encountering result alpha values of 0.0
 * on a non-premultiplied destination.
 * Note that the simplification of removing the divide by alpha
 * in the case of the SRC rule is technically not valid if the
 * denominator (alpha) is 0.
 * But, since the results should only be expected to be accurate
 * when viewed in premultiplied form, a resulting alpha of 0
 * essentially renders the resulting color components irrelevant
 * and so exact behavior in this case should not be expected.
 * </ul>
 * @see Composite
 * @see CompositeContext
 * @version 10 Feb 1997
 */

public final class AlphaComposite implements Composite {
    /**
     * Both the color and the alpha of the destination are cleared
     * (Porter-Duff Clear rule).
     * Neither the source nor the destination is used as input.
     *<p>
     * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 0, thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = 0
     * 	<em>C<sub>r</sub></em> = 0
     *</pre>
     */
    public static final int	CLEAR		= 1;

    /**
     * The source is copied to the destination
     * (Porter-Duff Source rule).
     * The destination is not used as input.
     *<p>
     * <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = 0, thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>
     * 	<em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>
     *</pre>
     */
    public static final int	SRC		= 2;

    /**
     * The destination is left untouched
     * (Porter-Duff Destination rule).
     *<p>
     * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 1, thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>
     * 	<em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>
     *</pre>
     * @since 1.4
     */
    public static final int	DST		= 9;
    // Note that DST was added in 1.4 so it is numbered out of order...

    /**
     * The source is composited over the destination
     * (Porter-Duff Source Over Destination rule).
     *<p>
     * <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>s</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
     * 	<em>C<sub>r</sub></em> = <em>C<sub>s</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
     *</pre>
     */
    public static final int	SRC_OVER	= 3;

    /**
     * The destination is composited over the source and
     * the result replaces the destination
     * (Porter-Duff Destination Over Source rule).
     *<p>
     * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 1, thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>
     * 	<em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>
     *</pre>
     */
    public static final int	DST_OVER	= 4;

    /**
     * The part of the source lying inside of the destination replaces
     * the destination
     * (Porter-Duff Source In Destination rule).
     *<p>
     * <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = 0, thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em>
     * 	<em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em>
     *</pre>
     */
    public static final int	SRC_IN		= 5;

    /**
     * The part of the destination lying inside of the source
     * replaces the destination
     * (Porter-Duff Destination In Source rule).
     *<p>
     * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em>
     * 	<em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
     *</pre>
     */
    public static final int	DST_IN		= 6;

    /**
     * The part of the source lying outside of the destination
     * replaces the destination
     * (Porter-Duff Source Held Out By Destination rule).
     *<p>
     * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 0, thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
     * 	<em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
     *</pre>
     */
    public static final int	SRC_OUT		= 7;

    /**
     * The part of the destination lying outside of the source
     * replaces the destination
     * (Porter-Duff Destination Held Out By Source rule).
     *<p>
     * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
     * 	<em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
     *</pre>
     */
    public static final int	DST_OUT		= 8;

    // Rule 9 is DST which is defined above where it fits into the
    // list logically, rather than numerically
    //
    // public static final int	DST		= 9;

    /**
     * The part of the source lying inside of the destination
     * is composited onto the destination
     * (Porter-Duff Source Atop Destination rule).
     *<p>
     * <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) = <em>A<sub>d</sub></em>
     * 	<em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
     *</pre>
     * @since 1.4
     */
    public static final int	SRC_ATOP	= 10;

    /**
     * The part of the destination lying inside of the source
     * is composited over the source and replaces the destination
     * (Porter-Duff Destination Atop Source rule).
     *<p>
     * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em> = <em>A<sub>s</sub></em>
     * 	<em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
     *</pre>
     * @since 1.4
     */
    public static final int	DST_ATOP	= 11;

    /**
     * The part of the source that lies outside of the destination
     * is combined with the part of the destination that lies outside
     * of the source
     * (Porter-Duff Source Xor Destination rule).
     *<p>
     * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
     *<pre>
     * 	<em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
     * 	<em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
     *</pre>
     * @since 1.4
     */
    public static final int	XOR		= 12;

    /**
     * <code>AlphaComposite</code> object that implements the opaque CLEAR rule
     * with an alpha of 1.0f.
     * @see #CLEAR
     */
    public static final AlphaComposite Clear	= new AlphaComposite(CLEAR);

    /**
     * <code>AlphaComposite</code> object that implements the opaque SRC rule
     * with an alpha of 1.0f.
     * @see #SRC
     */
    public static final AlphaComposite Src	= new AlphaComposite(SRC);

    /**
     * <code>AlphaComposite</code> object that implements the opaque DST rule
     * with an alpha of 1.0f.
     * @see #DST
     * @since 1.4
     */
    public static final AlphaComposite Dst	= new AlphaComposite(DST);

    /**
     * <code>AlphaComposite</code> object that implements the opaque SRC_OVER rule
     * with an alpha of 1.0f.
     * @see #SRC_OVER
     */
    public static final AlphaComposite SrcOver	= new AlphaComposite(SRC_OVER);

    /**
     * <code>AlphaComposite</code> object that implements the opaque DST_OVER rule
     * with an alpha of 1.0f.
     * @see #DST_OVER
     */
    public static final AlphaComposite DstOver	= new AlphaComposite(DST_OVER);

    /**
     * <code>AlphaComposite</code> object that implements the opaque SRC_IN rule
     * with an alpha of 1.0f.
     * @see #SRC_IN
     */
    public static final AlphaComposite SrcIn	= new AlphaComposite(SRC_IN);

    /**
     * <code>AlphaComposite</code> object that implements the opaque DST_IN rule
     * with an alpha of 1.0f.
     * @see #DST_IN
     */
    public static final AlphaComposite DstIn	= new AlphaComposite(DST_IN);

    /**
     * <code>AlphaComposite</code> object that implements the opaque SRC_OUT rule
     * with an alpha of 1.0f.
     * @see #SRC_OUT
     */
    public static final AlphaComposite SrcOut	= new AlphaComposite(SRC_OUT);

    /**
     * <code>AlphaComposite</code> object that implements the opaque DST_OUT rule
     * with an alpha of 1.0f.
     * @see #DST_OUT
     */
    public static final AlphaComposite DstOut	= new AlphaComposite(DST_OUT);

    /**
     * <code>AlphaComposite</code> object that implements the opaque SRC_ATOP rule
     * with an alpha of 1.0f.
     * @see #SRC_ATOP
     * @since 1.4
     */
    public static final AlphaComposite SrcAtop	= new AlphaComposite(SRC_ATOP);

    /**
     * <code>AlphaComposite</code> object that implements the opaque DST_ATOP rule
     * with an alpha of 1.0f.
     * @see #DST_ATOP
     * @since 1.4
     */
    public static final AlphaComposite DstAtop	= new AlphaComposite(DST_ATOP);

    /**
     * <code>AlphaComposite</code> object that implements the opaque XOR rule
     * with an alpha of 1.0f.
     * @see #XOR
     * @since 1.4
     */
    public static final AlphaComposite Xor	= new AlphaComposite(XOR);

    private static final int MIN_RULE = CLEAR;
    private static final int MAX_RULE = XOR;

    float extraAlpha;
    int rule;

    private AlphaComposite(int rule) {
	this(rule, 1.0f);
    }

    private AlphaComposite(int rule, float alpha) {
	if (alpha < 0.0f || alpha > 1.0f) {
	    throw new IllegalArgumentException("alpha value out of range");
	}
	if (rule < MIN_RULE || rule > MAX_RULE) {
	    throw new IllegalArgumentException("unknown composite rule");
	}
	this.rule = rule;
	this.extraAlpha = alpha;
    }

    /**
     * Creates an <code>AlphaComposite</code> object with the specified rule.
     * @param rule the compositing rule
     * @throws IllegalArgumentException if <code>rule</code> is not one of 
     *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
     *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN}, 
     *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
     *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
     */
    public static AlphaComposite getInstance(int rule) {
	switch (rule) {
	case CLEAR:
	    return Clear;
	case SRC:
	    return Src;
	case DST:
	    return Dst;
	case SRC_OVER:
	    return SrcOver;
	case DST_OVER:
	    return DstOver;
	case SRC_IN:
	    return SrcIn;
	case DST_IN:
	    return DstIn;
	case SRC_OUT:
	    return SrcOut;
	case DST_OUT:
	    return DstOut;
	case SRC_ATOP:
	    return SrcAtop;
	case DST_ATOP:
	    return DstAtop;
	case XOR:
	    return Xor;
	default:
	    throw new IllegalArgumentException("unknown composite rule");
	}
    }

    /**
     * Creates an <code>AlphaComposite</code> object with the specified rule and
     * the constant alpha to multiply with the alpha of the source.
     * The source is multiplied with the specified alpha before being composited
     * with the destination.
     * @param rule the compositing rule
     * @param alpha the constant alpha to be multiplied with the alpha of
     * the source. <code>alpha</code> must be a floating point number in the
     * inclusive range [0.0,&nbsp;1.0]. 
     * @throws IllegalArgumentException if 
     *         <code>alpha</code> is less than 0.0 or greater than 1.0, or if
     *         <code>rule</code> is not one of 
     *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
     *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN}, 
     *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
     *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
     */
    public static AlphaComposite getInstance(int rule, float alpha) {
	if (alpha == 1.0f) {
	    return getInstance(rule);
	}
	return new AlphaComposite(rule, alpha);
    }

    /**
     * Creates a context for the compositing operation.
     * The context contains state that is used in performing
     * the compositing operation.
     * @param srcColorModel  the {@link ColorModel} of the source
     * @param dstColorModel  the <code>ColorModel</code> of the destination
     * @return the <code>CompositeContext</code> object to be used to perform
     * compositing operations.
     */
    public CompositeContext createContext(ColorModel srcColorModel,
					  ColorModel dstColorModel,
                                          RenderingHints hints) {
        return new SunCompositeContext(this, srcColorModel, dstColorModel);
    }

    /**
     * Returns the alpha value of this <code>AlphaComposite</code>.  If this
     * <code>AlphaComposite</code> does not have an alpha value, 1.0 is returned.
     * @return the alpha value of this <code>AlphaComposite</code>.
     */
    public float getAlpha() {
	return extraAlpha;
    }

    /**
     * Returns the compositing rule of this <code>AlphaComposite</code>.
     * @return the compositing rule of this <code>AlphaComposite</code>.
     */
    public int getRule() {
        return rule;
    }

    /**
     * Returns a similar <code>AlphaComposite</code> object that uses
     * the specified compositing rule.
     * If this object already uses the specified compositing rule,
     * this object is returned.
     * @return an <code>AlphaComposite</code> object derived from
     * this object that uses the specified compositing rule.
     * @param rule the compositing rule
     * @throws IllegalArgumentException if 
     *         <code>rule</code> is not one of 
     *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
     *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN}, 
     *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
     *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
     * @since 1.6
     */
    public AlphaComposite derive(int rule) {
	return (this.rule == rule)
	    ? this
	    : getInstance(rule, this.extraAlpha);
    }

    /**
     * Returns a similar <code>AlphaComposite</code> object that uses
     * the specified alpha value.
     * If this object already has the specified alpha value,
     * this object is returned.
     * @return an <code>AlphaComposite</code> object derived from
     * this object that uses the specified alpha value.
     * @param alpha the constant alpha to be multiplied with the alpha of
     * the source. <code>alpha</code> must be a floating point number in the
     * inclusive range [0.0,&nbsp;1.0]. 
     * @throws IllegalArgumentException if 
     *         <code>alpha</code> is less than 0.0 or greater than 1.0
     * @since 1.6
     */
    public AlphaComposite derive(float alpha) {
	return (this.extraAlpha == alpha)
	    ? this
	    : getInstance(this.rule, alpha);
    }

    /**
     * Returns the hashcode for this composite.
     * @return      a hash code for this composite.
     */
    public int hashCode() {
	return (Float.floatToIntBits(extraAlpha) * 31 + rule);
    }

    /**
     * Determines whether the specified object is equal to this 
     * <code>AlphaComposite</code>.
     * <p>
     * The result is <code>true</code> if and only if
     * the argument is not <code>null</code> and is an
     * <code>AlphaComposite</code> object that has the same
     * compositing rule and alpha value as this object.
     *
     * @param obj the <code>Object</code> to test for equality
     * @return <code>true</code> if <code>obj</code> equals this
     * <code>AlphaComposite</code>; <code>false</code> otherwise.
     */
    public boolean equals(Object obj) {
        if (!(obj instanceof AlphaComposite)) {
            return false;
        }

        AlphaComposite ac = (AlphaComposite) obj;

        if (rule != ac.rule) {
            return false;
        }

        if (extraAlpha != ac.extraAlpha) {
            return false;
        }

        return true;
    }
            
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar