/*
* @(#)Rectangle.java 1.73 06/05/18
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package java.awt;
import java.awt.geom.Rectangle2D;
/**
* A <code>Rectangle</code> specifies an area in a coordinate space that is
* enclosed by the <code>Rectangle</code> object's upper-left point
* {@code (x,y)}
* in the coordinate space, its width, and its height.
* <p>
* A <code>Rectangle</code> object's <code>width</code> and
* <code>height</code> are <code>public</code> fields. The constructors
* that create a <code>Rectangle</code>, and the methods that can modify
* one, do not prevent setting a negative value for width or height.
* <p>
* <a name="Empty">
* A {@code Rectangle} whose width or height is exactly zero has location
* along those axes with zero dimension, but is otherwise considered empty.
* The {@link #isEmpty} method will return true for such a {@code Rectangle}.
* Methods which test if an empty {@code Rectangle} contains or intersects
* a point or rectangle will always return false if either dimension is zero.
* Methods which combine such a {@code Rectangle} with a point or rectangle
* will include the location of the {@code Rectangle} on that axis in the
* result as if the {@link #add(Point)} method were being called.
* </a>
* <p>
* <a name="NonExistant">
* A {@code Rectangle} whose width or height is negative has neither
* location nor dimension along those axes with negative dimensions.
* Such a {@code Rectangle} is treated as non-existant along those axes.
* Such a {@code Rectangle} is also empty with respect to containment
* calculations and methods which test if it contains or intersects a
* point or rectangle will always return false.
* Methods which combine such a {@code Rectangle} with a point or rectangle
* will ignore the {@code Rectangle} entirely in generating the result.
* If two {@code Rectangle} objects are combined and each has a negative
* dimension, the result will have at least one negative dimension.
* </a>
* <p>
* Methods which affect only the location of a {@code Rectangle} will
* operate on its location regardless of whether or not it has a negative
* or zero dimension along either axis.
* <p>
* Note that a {@code Rectangle} constructed with the default no-argument
* constructor will have dimensions of {@code 0x0} and therefore be empty.
* That {@code Rectangle} will still have a location of {@code (0,0)} and
* will contribute that location to the union and add operations.
* Code attempting to accumulate the bounds of a set of points should
* therefore initially construct the {@code Rectangle} with a specifically
* negative width and height or it should use the first point in the set
* to construct the {@code Rectangle}.
* For example:
* <pre>
* Rectangle bounds = new Rectangle(0, 0, -1, -1);
* for (int i = 0; i < points.length; i++) {
* bounds.add(points[i]);
* }
* </pre>
* or if we know that the points array contains at least one point:
* <pre>
* Rectangle bounds = new Rectangle(points[0]);
* for (int i = 1; i < points.length; i++) {
* bounds.add(points[i]);
* }
* </pre>
* <p>
* This class uses 32-bit integers to store its location and dimensions.
* Frequently operations may produce a result that exceeds the range of
* a 32-bit integer.
* The methods will calculate their results in a way that avoids any
* 32-bit overflow for intermediate results and then choose the best
* representation to store the final results back into the 32-bit fields
* which hold the location and dimensions.
* The location of the result will be stored into the {@link #x} and
* {@link #y} fields by clipping the true result to the nearest 32-bit value.
* The values stored into the {@link #width} and {@link #height} dimension
* fields will be chosen as the 32-bit values that encompass the largest
* part of the true result as possible.
* Generally this means that the dimension will be clipped independently
* to the range of 32-bit integers except that if the location had to be
* moved to store it into its pair of 32-bit fields then the dimensions
* will be adjusted relative to the "best representation" of the location.
* If the true result had a negative dimension and was therefore
* non-existant along one or both axes, the stored dimensions will be
* negative numbers in those axes.
* If the true result had a location that could be represented within
* the range of 32-bit integers, but zero dimension along one or both
* axes, then the stored dimensions will be zero in those axes.
*
* @version 1.73, 05/18/06
* @author Sami Shaio
* @since 1.0
*/
public class Rectangle extends Rectangle2D
implements Shape, java.io.Serializable
{
/**
* The X coordinate of the upper-left corner of the <code>Rectangle</code>.
*
* @serial
* @see #setLocation(int, int)
* @see #getLocation()
* @since 1.0
*/
public int x;
/**
* The Y coordinate of the upper-left corner of the <code>Rectangle</code>.
*
* @serial
* @see #setLocation(int, int)
* @see #getLocation()
* @since 1.0
*/
public int y;
/**
* The width of the <code>Rectangle</code>.
* @serial
* @see #setSize(int, int)
* @see #getSize()
* @since 1.0
*/
public int width;
/**
* The height of the <code>Rectangle</code>.
*
* @serial
* @see #setSize(int, int)
* @see #getSize()
* @since 1.0
*/
public int height;
/*
* JDK 1.1 serialVersionUID
*/
private static final long serialVersionUID = -4345857070255674764L;
/**
* Initialize JNI field and method IDs
*/
private static native void initIDs();
static {
/* ensure that the necessary native libraries are loaded */
Toolkit.loadLibraries();
if (!GraphicsEnvironment.isHeadless()) {
initIDs();
}
}
/**
* Constructs a new <code>Rectangle</code> whose upper-left corner
* is at (0, 0) in the coordinate space, and whose width and
* height are both zero.
*/
public Rectangle() {
this(0, 0, 0, 0);
}
/**
* Constructs a new <code>Rectangle</code>, initialized to match
* the values of the specified <code>Rectangle</code>.
* @param r the <code>Rectangle</code> from which to copy initial values
* to a newly constructed <code>Rectangle</code>
* @since 1.1
*/
public Rectangle(Rectangle r) {
this(r.x, r.y, r.width, r.height);
}
/**
* Constructs a new <code>Rectangle</code> whose upper-left corner is
* specified as
* {@code (x,y)} and whose width and height
* are specified by the arguments of the same name.
* @param x the specified X coordinate
* @param y the specified Y coordinate
* @param width the width of the <code>Rectangle</code>
* @param height the height of the <code>Rectangle</code>
* @since 1.0
*/
public Rectangle(int x, int y, int width, int height) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;
}
/**
* Constructs a new <code>Rectangle</code> whose upper-left corner
* is at (0, 0) in the coordinate space, and whose width and
* height are specified by the arguments of the same name.
* @param width the width of the <code>Rectangle</code>
* @param height the height of the <code>Rectangle</code>
*/
public Rectangle(int width, int height) {
this(0, 0, width, height);
}
/**
* Constructs a new <code>Rectangle</code> whose upper-left corner is
* specified by the {@link Point} argument, and
* whose width and height are specified by the
* {@link Dimension} argument.
* @param p a <code>Point</code> that is the upper-left corner of
* the <code>Rectangle</code>
* @param d a <code>Dimension</code>, representing the
* width and height of the <code>Rectangle</code>
*/
public Rectangle(Point p, Dimension d) {
this(p.x, p.y, d.width, d.height);
}
/**
* Constructs a new <code>Rectangle</code> whose upper-left corner is the
* specified <code>Point</code>, and whose width and height are both zero.
* @param p a <code>Point</code> that is the top left corner
* of the <code>Rectangle</code>
*/
public Rectangle(Point p) {
this(p.x, p.y, 0, 0);
}
/**
* Constructs a new <code>Rectangle</code> whose top left corner is
* (0, 0) and whose width and height are specified
* by the <code>Dimension</code> argument.
* @param d a <code>Dimension</code>, specifying width and height
*/
public Rectangle(Dimension d) {
this(0, 0, d.width, d.height);
}
/**
* Returns the X coordinate of the bounding <code>Rectangle</code> in
* <code>double</code> precision.
* @return the X coordinate of the bounding <code>Rectangle</code>.
*/
public double getX() {
return x;
}
/**
* Returns the Y coordinate of the bounding <code>Rectangle</code> in
* <code>double</code> precision.
* @return the Y coordinate of the bounding <code>Rectangle</code>.
*/
public double getY() {
return y;
}
/**
* Returns the width of the bounding <code>Rectangle</code> in
* <code>double</code> precision.
* @return the width of the bounding <code>Rectangle</code>.
*/
public double getWidth() {
return width;
}
/**
* Returns the height of the bounding <code>Rectangle</code> in
* <code>double</code> precision.
* @return the height of the bounding <code>Rectangle</code>.
*/
public double getHeight() {
return height;
}
/**
* Gets the bounding <code>Rectangle</code> of this <code>Rectangle</code>.
* <p>
* This method is included for completeness, to parallel the
* <code>getBounds</code> method of
* {@link Component}.
* @return a new <code>Rectangle</code>, equal to the
* bounding <code>Rectangle</code> for this <code>Rectangle</code>.
* @see java.awt.Component#getBounds
* @see #setBounds(Rectangle)
* @see #setBounds(int, int, int, int)
* @since 1.1
*/
public Rectangle getBounds() {
return new Rectangle(x, y, width, height);
}
/**
* {@inheritDoc}
* @since 1.2
*/
public Rectangle2D getBounds2D() {
return new Rectangle(x, y, width, height);
}
/**
* Sets the bounding <code>Rectangle</code> of this <code>Rectangle</code>
* to match the specified <code>Rectangle</code>.
* <p>
* This method is included for completeness, to parallel the
* <code>setBounds</code> method of <code>Component</code>.
* @param r the specified <code>Rectangle</code>
* @see #getBounds
* @see java.awt.Component#setBounds(java.awt.Rectangle)
* @since 1.1
*/
public void setBounds(Rectangle r) {
setBounds(r.x, r.y, r.width, r.height);
}
/**
* Sets the bounding <code>Rectangle</code> of this
* <code>Rectangle</code> to the specified
* <code>x</code>, <code>y</code>, <code>width</code>,
* and <code>height</code>.
* <p>
* This method is included for completeness, to parallel the
* <code>setBounds</code> method of <code>Component</code>.
* @param x the new X coordinate for the upper-left
* corner of this <code>Rectangle</code>
* @param y the new Y coordinate for the upper-left
* corner of this <code>Rectangle</code>
* @param width the new width for this <code>Rectangle</code>
* @param height the new height for this <code>Rectangle</code>
* @see #getBounds
* @see java.awt.Component#setBounds(int, int, int, int)
* @since 1.1
*/
public void setBounds(int x, int y, int width, int height) {
reshape(x, y, width, height);
}
/**
* Sets the bounds of this {@code Rectangle} to the integer bounds
* which encompass the specified {@code x}, {@code y}, {@code width},
* and {@code height}.
* If the parameters specify a {@code Rectangle} that exceeds the
* maximum range of integers, the result will be the best
* representation of the specified {@code Rectangle} intersected
* with the maximum integer bounds.
* @param x the X coordinate of the upper-left corner of
* the specified rectangle
* @param y the Y coordinate of the upper-left corner of
* the specified rectangle
* @param width the width of the specified rectangle
* @param height the new height of the specified rectangle
*/
public void setRect(double x, double y, double width, double height) {
int newx, newy, neww, newh;
if (x > 2.0 * Integer.MAX_VALUE) {
// Too far in positive X direction to represent...
// We cannot even reach the left side of the specified
// rectangle even with both x & width set to MAX_VALUE.
// The intersection with the "maximal integer rectangle"
// is non-existant so we should use a width < 0.
// REMIND: Should we try to determine a more "meaningful"
// adjusted value for neww than just "-1"?
newx = Integer.MAX_VALUE;
neww = -1;
} else {
newx = clip(x, false);
if (width >= 0) width += x-newx;
neww = clip(width, width >= 0);
}
if (y > 2.0 * Integer.MAX_VALUE) {
// Too far in positive Y direction to represent...
newy = Integer.MAX_VALUE;
newh = -1;
} else {
newy = clip(y, false);
if (height >= 0) height += y-newy;
newh = clip(height, height >= 0);
}
reshape(newx, newy, neww, newh);
}
// Return best integer representation for v, clipped to integer
// range and floor-ed or ceiling-ed, depending on the boolean.
private static int clip(double v, boolean doceil) {
if (v <= Integer.MIN_VALUE) {
return Integer.MIN_VALUE;
}
if (v >= Integer.MAX_VALUE) {
return Integer.MAX_VALUE;
}
return (int) (doceil ? Math.ceil(v) : Math.floor(v));
}
/**
* Sets the bounding <code>Rectangle</code> of this
* <code>Rectangle</code> to the specified
* <code>x</code>, <code>y</code>, <code>width</code>,
* and <code>height</code>.
* <p>
* @param x the new X coordinate for the upper-left
* corner of this <code>Rectangle</code>
* @param y the new Y coordinate for the upper-left
* corner of this <code>Rectangle</code>
* @param width the new width for this <code>Rectangle</code>
* @param height the new height for this <code>Rectangle</code>
* @deprecated As of JDK version 1.1,
* replaced by <code>setBounds(int, int, int, int)</code>.
*/
@Deprecated
public void reshape(int x, int y, int width, int height) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;
}
/**
* Returns the location of this <code>Rectangle</code>.
* <p>
* This method is included for completeness, to parallel the
* <code>getLocation</code> method of <code>Component</code>.
* @return the <code>Point</code> that is the upper-left corner of
* this <code>Rectangle</code>.
* @see java.awt.Component#getLocation
* @see #setLocation(Point)
* @see #setLocation(int, int)
* @since 1.1
*/
public Point getLocation() {
return new Point(x, y);
}
/**
* Moves this <code>Rectangle</code> to the specified location.
* <p>
* This method is included for completeness, to parallel the
* <code>setLocation</code> method of <code>Component</code>.
* @param p the <code>Point</code> specifying the new location
* for this <code>Rectangle</code>
* @see java.awt.Component#setLocation(java.awt.Point)
* @see #getLocation
* @since 1.1
*/
public void setLocation(Point p) {
setLocation(p.x, p.y);
}
/**
* Moves this <code>Rectangle</code> to the specified location.
* <p>
* This method is included for completeness, to parallel the
* <code>setLocation</code> method of <code>Component</code>.
* @param x the X coordinate of the new location
* @param y the Y coordinate of the new location
* @see #getLocation
* @see java.awt.Component#setLocation(int, int)
* @since 1.1
*/
public void setLocation(int x, int y) {
move(x, y);
}
/**
* Moves this <code>Rectangle</code> to the specified location.
* <p>
* @param x the X coordinate of the new location
* @param y the Y coordinate of the new location
* @deprecated As of JDK version 1.1,
* replaced by <code>setLocation(int, int)</code>.
*/
@Deprecated
public void move(int x, int y) {
this.x = x;
this.y = y;
}
/**
* Translates this <code>Rectangle</code> the indicated distance,
* to the right along the X coordinate axis, and
* downward along the Y coordinate axis.
* @param dx the distance to move this <code>Rectangle</code>
* along the X axis
* @param dy the distance to move this <code>Rectangle</code>
* along the Y axis
* @see java.awt.Rectangle#setLocation(int, int)
* @see java.awt.Rectangle#setLocation(java.awt.Point)
*/
public void translate(int dx, int dy) {
int oldv = this.x;
int newv = oldv + dx;
if (dx < 0) {
// moving leftward
if (newv > oldv) {
// negative overflow
// Only adjust width if it was valid (>= 0).
if (width >= 0) {
// The right edge is now conceptually at
// newv+width, but we may move newv to prevent
// overflow. But we want the right edge to
// remain at its new location in spite of the
// clipping. Think of the following adjustment
// conceptually the same as:
// width += newv; newv = MIN_VALUE; width -= newv;
width += newv - Integer.MIN_VALUE;
// width may go negative if the right edge went past
// MIN_VALUE, but it cannot overflow since it cannot
// have moved more than MIN_VALUE and any non-negative
// number + MIN_VALUE does not overflow.
}
newv = Integer.MIN_VALUE;
}
} else {
// moving rightward (or staying still)
if (newv < oldv) {
// positive overflow
if (width >= 0) {
// Conceptually the same as:
// width += newv; newv = MAX_VALUE; width -= newv;
width += newv - Integer.MAX_VALUE;
// With large widths and large displacements
// we may overflow so we need to check it.
if (width < 0) width = Integer.MAX_VALUE;
}
newv = Integer.MAX_VALUE;
}
}
this.x = newv;
oldv = this.y;
newv = oldv + dy;
if (dy < 0) {
// moving upward
if (newv > oldv) {
// negative overflow
if (height >= 0) {
height += newv - Integer.MIN_VALUE;
// See above comment about no overflow in this case
}
newv = Integer.MIN_VALUE;
}
} else {
// moving downward (or staying still)
if (newv < oldv) {
// positive overflow
if (height >= 0) {
height += newv - Integer.MAX_VALUE;
if (height < 0) height = Integer.MAX_VALUE;
}
newv = Integer.MAX_VALUE;
}
}
this.y = newv;
}
/**
* Gets the size of this <code>Rectangle</code>, represented by
* the returned <code>Dimension</code>.
* <p>
* This method is included for completeness, to parallel the
* <code>getSize</code> method of <code>Component</code>.
* @return a <code>Dimension</code>, representing the size of
* this <code>Rectangle</code>.
* @see java.awt.Component#getSize
* @see #setSize(Dimension)
* @see #setSize(int, int)
* @since 1.1
*/
public Dimension getSize() {
return new Dimension(width, height);
}
/**
* Sets the size of this <code>Rectangle</code> to match the
* specified <code>Dimension</code>.
* <p>
* This method is included for completeness, to parallel the
* <code>setSize</code> method of <code>Component</code>.
* @param d the new size for the <code>Dimension</code> object
* @see java.awt.Component#setSize(java.awt.Dimension)
* @see #getSize
* @since 1.1
*/
public void setSize(Dimension d) {
setSize(d.width, d.height);
}
/**
* Sets the size of this <code>Rectangle</code> to the specified
* width and height.
* <p>
* This method is included for completeness, to parallel the
* <code>setSize</code> method of <code>Component</code>.
* @param width the new width for this <code>Rectangle</code>
* @param height the new height for this <code>Rectangle</code>
* @see java.awt.Component#setSize(int, int)
* @see #getSize
* @since 1.1
*/
public void setSize(int width, int height) {
resize(width, height);
}
/**
* Sets the size of this <code>Rectangle</code> to the specified
* width and height.
* <p>
* @param width the new width for this <code>Rectangle</code>
* @param height the new height for this <code>Rectangle</code>
* @deprecated As of JDK version 1.1,
* replaced by <code>setSize(int, int)</code>.
*/
@Deprecated
public void resize(int width, int height) {
this.width = width;
this.height = height;
}
/**
* Checks whether or not this <code>Rectangle</code> contains the
* specified <code>Point</code>.
* @param p the <code>Point</code> to test
* @return <code>true</code> if the specified <code>Point</code>
* is inside this <code>Rectangle</code>;
* <code>false</code> otherwise.
* @since 1.1
*/
public boolean contains(Point p) {
return contains(p.x, p.y);
}
/**
* Checks whether or not this <code>Rectangle</code> contains the
* point at the specified location {@code (x,y)}.
*
* @param x the specified X coordinate
* @param y the specified Y coordinate
* @return <code>true</code> if the point
* {@code (x,y)} is inside this
* <code>Rectangle</code>;
* <code>false</code> otherwise.
* @since 1.1
*/
public boolean contains(int x, int y) {
return inside(x, y);
}
/**
* Checks whether or not this <code>Rectangle</code> entirely contains
* the specified <code>Rectangle</code>.
*
* @param r the specified <code>Rectangle</code>
* @return <code>true</code> if the <code>Rectangle</code>
* is contained entirely inside this <code>Rectangle</code>;
* <code>false</code> otherwise
* @since 1.2
*/
public boolean contains(Rectangle r) {
return contains(r.x, r.y, r.width, r.height);
}
/**
* Checks whether this <code>Rectangle</code> entirely contains
* the <code>Rectangle</code>
* at the specified location {@code (X,Y)} with the
* specified dimensions {@code (W,H)}.
* @param X the specified X coordinate
* @param Y the specified Y coordinate
* @param W the width of the <code>Rectangle</code>
* @param H the height of the <code>Rectangle</code>
* @return <code>true</code> if the <code>Rectangle</code> specified by
* {@code (X, Y, W, H)}
* is entirely enclosed inside this <code>Rectangle</code>;
* <code>false</code> otherwise.
* @since 1.1
*/
public boolean contains(int X, int Y, int W, int H) {
int w = this.width;
int h = this.height;
if ((w | h | W | H) < 0) {
// At least one of the dimensions is negative...
return false;
}
// Note: if any dimension is zero, tests below must return false...
int x = this.x;
int y = this.y;
if (X < x || Y < y) {
return false;
}
w += x;
W += X;
if (W <= X) {
// X+W overflowed or W was zero, return false if...
// either original w or W was zero or
// x+w did not overflow or
// the overflowed x+w is smaller than the overflowed X+W
if (w >= x || W > w) return false;
} else {
// X+W did not overflow and W was not zero, return false if...
// original w was zero or
// x+w did not overflow and x+w is smaller than X+W
if (w >= x && W > w) return false;
}
h += y;
H += Y;
if (H <= Y) {
if (h >= y || H > h) return false;
} else {
if (h >= y && H > h) return false;
}
return true;
}
/**
* Checks whether or not this <code>Rectangle</code> contains the
* point at the specified location {@code (X,Y)}.
*
* @param X the specified X coordinate
* @param Y the specified Y coordinate
* @return <code>true</code> if the point
* {@code (X,Y)} is inside this
* <code>Rectangle</code>;
* <code>false</code> otherwise.
* @deprecated As of JDK version 1.1,
* replaced by <code>contains(int, int)</code>.
*/
@Deprecated
public boolean inside(int X, int Y) {
int w = this.width;
int h = this.height;
if ((w | h) < 0) {
// At least one of the dimensions is negative...
return false;
}
// Note: if either dimension is zero, tests below must return false...
int x = this.x;
int y = this.y;
if (X < x || Y < y) {
return false;
}
w += x;
h += y;
// overflow || intersect
return ((w < x || w > X) &&
(h < y || h > Y));
}
/**
* Determines whether or not this <code>Rectangle</code> and the specified
* <code>Rectangle</code> intersect. Two rectangles intersect if
* their intersection is nonempty.
*
* @param r the specified <code>Rectangle</code>
* @return <code>true</code> if the specified <code>Rectangle</code>
* and this <code>Rectangle</code> intersect;
* <code>false</code> otherwise.
*/
public boolean intersects(Rectangle r) {
int tw = this.width;
int th = this.height;
int rw = r.width;
int rh = r.height;
if (rw <= 0 || rh <= 0 || tw <= 0 || th <= 0) {
return false;
}
int tx = this.x;
int ty = this.y;
int rx = r.x;
int ry = r.y;
rw += rx;
rh += ry;
tw += tx;
th += ty;
// overflow || intersect
return ((rw < rx || rw > tx) &&
(rh < ry || rh > ty) &&
(tw < tx || tw > rx) &&
(th < ty || th > ry));
}
/**
* Computes the intersection of this <code>Rectangle</code> with the
* specified <code>Rectangle</code>. Returns a new <code>Rectangle</code>
* that represents the intersection of the two rectangles.
* If the two rectangles do not intersect, the result will be
* an empty rectangle.
*
* @param r the specified <code>Rectangle</code>
* @return the largest <code>Rectangle</code> contained in both the
* specified <code>Rectangle</code> and in
* this <code>Rectangle</code>; or if the rectangles
* do not intersect, an empty rectangle.
*/
public Rectangle intersection(Rectangle r) {
int tx1 = this.x;
int ty1 = this.y;
int rx1 = r.x;
int ry1 = r.y;
long tx2 = tx1; tx2 += this.width;
long ty2 = ty1; ty2 += this.height;
long rx2 = rx1; rx2 += r.width;
long ry2 = ry1; ry2 += r.height;
if (tx1 < rx1) tx1 = rx1;
if (ty1 < ry1) ty1 = ry1;
if (tx2 > rx2) tx2 = rx2;
if (ty2 > ry2) ty2 = ry2;
tx2 -= tx1;
ty2 -= ty1;
// tx2,ty2 will never overflow (they will never be
// larger than the smallest of the two source w,h)
// they might underflow, though...
if (tx2 < Integer.MIN_VALUE) tx2 = Integer.MIN_VALUE;
if (ty2 < Integer.MIN_VALUE) ty2 = Integer.MIN_VALUE;
return new Rectangle(tx1, ty1, (int) tx2, (int) ty2);
}
/**
* Computes the union of this <code>Rectangle</code> with the
* specified <code>Rectangle</code>. Returns a new
* <code>Rectangle</code> that
* represents the union of the two rectangles.
* <p>
* If either {@code Rectangle} has any dimension less than zero
* the rules for <a href=#NonExistant>non-existant</a> rectangles
* apply.
* If only one has a dimension less than zero, then the result
* will be a copy of the other {@code Rectangle}.
* If both have dimension less than zero, then the result will
* have at least one dimension less than zero.
* <p>
* If the resulting {@code Rectangle} would have a dimension
* too large to be expressed as an {@code int}, the result
* will have a dimension of {@code Integer.MAX_VALUE} along
* that dimension.
* @param r the specified <code>Rectangle</code>
* @return the smallest <code>Rectangle</code> containing both
* the specified <code>Rectangle</code> and this
* <code>Rectangle</code>.
*/
public Rectangle union(Rectangle r) {
long tx2 = this.width;
long ty2 = this.height;
if ((tx2 | ty2) < 0) {
// This rectangle has negative dimensions...
// If r has non-negative dimensions then it is the answer.
// If r is non-existant (has a negative dimension), then both
// are non-existant and we can return any non-existant rectangle
// as an answer. Thus, returning r meets that criterion.
// Either way, r is our answer.
return new Rectangle(r);
}
long rx2 = r.width;
long ry2 = r.height;
if ((rx2 | ry2) < 0) {
return new Rectangle(this);
}
int tx1 = this.x;
int ty1 = this.y;
tx2 += tx1;
ty2 += ty1;
int rx1 = r.x;
int ry1 = r.y;
rx2 += rx1;
ry2 += ry1;
if (tx1 > rx1) tx1 = rx1;
if (ty1 > ry1) ty1 = ry1;
if (tx2 < rx2) tx2 = rx2;
if (ty2 < ry2) ty2 = ry2;
tx2 -= tx1;
ty2 -= ty1;
// tx2,ty2 will never underflow since both original rectangles
// were already proven to be non-empty
// they might overflow, though...
if (tx2 > Integer.MAX_VALUE) tx2 = Integer.MAX_VALUE;
if (ty2 > Integer.MAX_VALUE) ty2 = Integer.MAX_VALUE;
return new Rectangle(tx1, ty1, (int) tx2, (int) ty2);
}
/**
* Adds a point, specified by the integer arguments {@code newx,newy}
* to the bounds of this {@code Rectangle}.
* <p>
* If this {@code Rectangle} has any dimension less than zero,
* the rules for <a href=#NonExistant>non-existant</a>
* rectangles apply.
* In that case, the new bounds of this {@code Rectangle} will
* have a location equal to the specified coordinates and
* width and height equal to zero.
* <p>
* After adding a point, a call to <code>contains</code> with the
* added point as an argument does not necessarily return
* <code>true</code>. The <code>contains</code> method does not
* return <code>true</code> for points on the right or bottom
* edges of a <code>Rectangle</code>. Therefore, if the added point
* falls on the right or bottom edge of the enlarged
* <code>Rectangle</code>, <code>contains</code> returns
* <code>false</code> for that point.
* If the specified point must be contained within the new
* {@code Rectangle}, a 1x1 rectangle should be added instead:
* <pre>
* r.add(newx, newy, 1, 1);
* </pre>
* @param newx the X coordinate of the new point
* @param newy the Y coordinate of the new point
*/
public void add(int newx, int newy) {
if ((width | height) < 0) {
this.x = newx;
this.y = newy;
this.width = this.height = 0;
return;
}
int x1 = this.x;
int y1 = this.y;
long x2 = this.width;
long y2 = this.height;
x2 += x1;
y2 += y1;
if (x1 > newx) x1 = newx;
if (y1 > newy) y1 = newy;
if (x2 < newx) x2 = newx;
if (y2 < newy) y2 = newy;
x2 -= x1;
y2 -= y1;
if (x2 > Integer.MAX_VALUE) x2 = Integer.MAX_VALUE;
if (y2 > Integer.MAX_VALUE) y2 = Integer.MAX_VALUE;
reshape(x1, y1, (int) x2, (int) y2);
}
/**
* Adds the specified {@code Point} to the bounds of this
* {@code Rectangle}.
* <p>
* If this {@code Rectangle} has any dimension less than zero,
* the rules for <a href=#NonExistant>non-existant</a>
* rectangles apply.
* In that case, the new bounds of this {@code Rectangle} will
* have a location equal to the coordinates of the specified
* {@code Point} and width and height equal to zero.
* <p>
* After adding a <code>Point</code>, a call to <code>contains</code>
* with the added <code>Point</code> as an argument does not
* necessarily return <code>true</code>. The <code>contains</code>
* method does not return <code>true</code> for points on the right
* or bottom edges of a <code>Rectangle</code>. Therefore if the added
* <code>Point</code> falls on the right or bottom edge of the
* enlarged <code>Rectangle</code>, <code>contains</code> returns
* <code>false</code> for that <code>Point</code>.
* If the specified point must be contained within the new
* {@code Rectangle}, a 1x1 rectangle should be added instead:
* <pre>
* r.add(pt.x, pt.y, 1, 1);
* </pre>
* @param pt the new <code>Point</code> to add to this
* <code>Rectangle</code>
*/
public void add(Point pt) {
add(pt.x, pt.y);
}
/**
* Adds a <code>Rectangle</code> to this <code>Rectangle</code>.
* The resulting <code>Rectangle</code> is the union of the two
* rectangles.
* <p>
* If either {@code Rectangle} has any dimension less than 0, the
* result will have the dimensions of the other {@code Rectangle}.
* If both {@code Rectangle}s have at least one dimension less
* than 0, the result will have at least one dimension less than 0.
* <p>
* If either {@code Rectangle} has one or both dimensions equal
* to 0, the result along those axes with 0 dimensions will be
* equivalent to the results obtained by adding the corresponding
* origin coordinate to the result rectangle along that axis,
* similar to the operation of the {@link #add(Point)} method,
* but contribute no further dimension beyond that.
* <p>
* If the resulting {@code Rectangle} would have a dimension
* too large to be expressed as an {@code int}, the result
* will have a dimension of {@code Integer.MAX_VALUE} along
* that dimension.
* @param r the specified <code>Rectangle</code>
*/
public void add(Rectangle r) {
long tx2 = this.width;
long ty2 = this.height;
if ((tx2 | ty2) < 0) {
reshape(r.x, r.y, r.width, r.height);
}
long rx2 = r.width;
long ry2 = r.height;
if ((rx2 | ry2) < 0) {
return;
}
int tx1 = this.x;
int ty1 = this.y;
tx2 += tx1;
ty2 += ty1;
int rx1 = r.x;
int ry1 = r.y;
rx2 += rx1;
ry2 += ry1;
if (tx1 > rx1) tx1 = rx1;
if (ty1 > ry1) ty1 = ry1;
if (tx2 < rx2) tx2 = rx2;
if (ty2 < ry2) ty2 = ry2;
tx2 -= tx1;
ty2 -= ty1;
// tx2,ty2 will never underflow since both original
// rectangles were non-empty
// they might overflow, though...
if (tx2 > Integer.MAX_VALUE) tx2 = Integer.MAX_VALUE;
if (ty2 > Integer.MAX_VALUE) ty2 = Integer.MAX_VALUE;
reshape(tx1, ty1, (int) tx2, (int) ty2);
}
/**
* Resizes the <code>Rectangle</code> both horizontally and vertically.
* <p>
* This method modifies the <code>Rectangle</code> so that it is
* <code>h</code> units larger on both the left and right side,
* and <code>v</code> units larger at both the top and bottom.
* <p>
* The new <code>Rectangle</code> has {@code (x - h, y - v)}
* as its upper-left corner,
* width of {@code (width + 2h)},
* and a height of {@code (height + 2v)}.
* <p>
* If negative values are supplied for <code>h</code> and
* <code>v</code>, the size of the <code>Rectangle</code>
* decreases accordingly.
* The {@code grow} method will check for integer overflow
* and underflow, but does not check whether the resulting
* values of {@code width} and {@code height} grow
* from negative to non-negative or shrink from non-negative
* to negative.
* @param h the horizontal expansion
* @param v the vertical expansion
*/
public void grow(int h, int v) {
long x0 = this.x;
long y0 = this.y;
long x1 = this.width;
long y1 = this.height;
x1 += x0;
y1 += y0;
x0 -= h;
y0 -= v;
x1 += h;
y1 += v;
if (x1 < x0) {
// Non-existant in X direction
// Final width must remain negative so subtract x0 before
// it is clipped so that we avoid the risk that the clipping
// of x0 will reverse the ordering of x0 and x1.
x1 -= x0;
if (x1 < Integer.MIN_VALUE) x1 = Integer.MIN_VALUE;
if (x0 < Integer.MIN_VALUE) x0 = Integer.MIN_VALUE;
else if (x0 > Integer.MAX_VALUE) x0 = Integer.MAX_VALUE;
} else { // (x1 >= x0)
// Clip x0 before we subtract it from x1 in case the clipping
// affects the representable area of the rectangle.
if (x0 < Integer.MIN_VALUE) x0 = Integer.MIN_VALUE;
else if (x0 > Integer.MAX_VALUE) x0 = Integer.MAX_VALUE;
x1 -= x0;
// The only way x1 can be negative now is if we clipped
// x0 against MIN and x1 is less than MIN - in which case
// we want to leave the width negative since the result
// did not intersect the representable area.
if (x1 < Integer.MIN_VALUE) x1 = Integer.MIN_VALUE;
else if (x1 > Integer.MAX_VALUE) x1 = Integer.MAX_VALUE;
}
if (y1 < y0) {
// Non-existant in Y direction
y1 -= y0;
if (y1 < Integer.MIN_VALUE) y1 = Integer.MIN_VALUE;
if (y0 < Integer.MIN_VALUE) y0 = Integer.MIN_VALUE;
else if (y0 > Integer.MAX_VALUE) y0 = Integer.MAX_VALUE;
} else { // (y1 >= y0)
if (y0 < Integer.MIN_VALUE) y0 = Integer.MIN_VALUE;
else if (y0 > Integer.MAX_VALUE) y0 = Integer.MAX_VALUE;
y1 -= y0;
if (y1 < Integer.MIN_VALUE) y1 = Integer.MIN_VALUE;
else if (y1 > Integer.MAX_VALUE) y1 = Integer.MAX_VALUE;
}
reshape((int) x0, (int) y0, (int) x1, (int) y1);
}
/**
* {@inheritDoc}
* @since 1.2
*/
public boolean isEmpty() {
return (width <= 0) || (height <= 0);
}
/**
* {@inheritDoc}
* @since 1.2
*/
public int outcode(double x, double y) {
/*
* Note on casts to double below. If the arithmetic of
* x+w or y+h is done in int, then we may get integer
* overflow. By converting to double before the addition
* we force the addition to be carried out in double to
* avoid overflow in the comparison.
*
* See bug 4320890 for problems that this can cause.
*/
int out = 0;
if (this.width <= 0) {
out |= OUT_LEFT | OUT_RIGHT;
} else if (x < this.x) {
out |= OUT_LEFT;
} else if (x > this.x + (double) this.width) {
out |= OUT_RIGHT;
}
if (this.height <= 0) {
out |= OUT_TOP | OUT_BOTTOM;
} else if (y < this.y) {
out |= OUT_TOP;
} else if (y > this.y + (double) this.height) {
out |= OUT_BOTTOM;
}
return out;
}
/**
* {@inheritDoc}
* @since 1.2
*/
public Rectangle2D createIntersection(Rectangle2D r) {
if (r instanceof Rectangle) {
return intersection((Rectangle) r);
}
Rectangle2D dest = new Rectangle2D.Double();
Rectangle2D.intersect(this, r, dest);
return dest;
}
/**
* {@inheritDoc}
* @since 1.2
*/
public Rectangle2D createUnion(Rectangle2D r) {
if (r instanceof Rectangle) {
return union((Rectangle) r);
}
Rectangle2D dest = new Rectangle2D.Double();
Rectangle2D.union(this, r, dest);
return dest;
}
/**
* Checks whether two rectangles are equal.
* <p>
* The result is <code>true</code> if and only if the argument is not
* <code>null</code> and is a <code>Rectangle</code> object that has the
* same upper-left corner, width, and height as
* this <code>Rectangle</code>.
* @param obj the <code>Object</code> to compare with
* this <code>Rectangle</code>
* @return <code>true</code> if the objects are equal;
* <code>false</code> otherwise.
*/
public boolean equals(Object obj) {
if (obj instanceof Rectangle) {
Rectangle r = (Rectangle)obj;
return ((x == r.x) &&
(y == r.y) &&
(width == r.width) &&
(height == r.height));
}
return super.equals(obj);
}
/**
* Returns a <code>String</code> representing this
* <code>Rectangle</code> and its values.
* @return a <code>String</code> representing this
* <code>Rectangle</code> object's coordinate and size values.
*/
public String toString() {
return getClass().getName() + "[x=" + x + ",y=" + y + ",width=" + width + ",height=" + height + "]";
}
}