The segment type constant for the set of 3 points that specify
a cubic parametric curve to be drawn from the most recently
specified point.
The curve is interpolated by solving the parametric control
equation in the range
(t=[0..1])
using
the most recently specified (current) point (CP),
the first control point (P1),
the second control point (P2),
and the final interpolated control point (P3).
The parametric control equation for this curve is:
P(t) = B(3,0)*CP + B(3,1)*P1 + B(3,2)*P2 + B(3,3)*P3
0 <= t <= 1
B(n,m) = mth coefficient of nth degree Bernstein polynomial
= C(n,m) * t^(m) * (1 - t)^(n-m)
C(n,m) = Combinations of n things, taken m at a time
= n! / (m! * (n-m)!)
This form of curve is commonly known as a Bézier curve.