API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.lang. StrictMath View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402

/*
 * @(#)StrictMath.java	1.29 05/11/17
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.lang;
import java.util.Random;
import sun.misc.FpUtils;

/**
 * The class <code>StrictMath</code> contains methods for performing basic 
 * numeric operations such as the elementary exponential, logarithm, 
 * square root, and trigonometric functions. 
 * 
 * <p>To help ensure portability of Java programs, the definitions of
 * some of the numeric functions in this package require that they
 * produce the same results as certain published algorithms. These
 * algorithms are available from the well-known network library
 * <code>netlib</code> as the package "Freely Distributable Math
 * Library," <a
 * href="ftp://ftp.netlib.org/fdlibm.tar"><code>fdlibm</code></a>. These
 * algorithms, which are written in the C programming language, are
 * then to be understood as executed with all floating-point
 * operations following the rules of Java floating-point arithmetic.
 * 
 * <p>The Java math library is defined with respect to
 * <code>fdlibm</code> version 5.3. Where <code>fdlibm</code> provides
 * more than one definition for a function (such as
 * <code>acos</code>), use the "IEEE 754 core function" version
 * (residing in a file whose name begins with the letter
 * <code>e</code>).  The methods which require <code>fdlibm</code>
 * semantics are <code>sin</code>, <code>cos</code>, <code>tan</code>,
 * <code>asin</code>, <code>acos</code>, <code>atan</code>,
 * <code>exp</code>, <code>log</code>, <code>log10</code>,
 * <code>cbrt</code>, <code>atan2</code>, <code>pow</code>,
 * <code>sinh</code>, <code>cosh</code>, <code>tanh</code>,
 * <code>hypot</code>, <code>expm1</code>, and <code>log1p</code>.
 *
 * @author  unascribed
 * @author  Joseph D. Darcy
 * @version 1.29, 11/17/05
 * @since   1.3
 */

public final class StrictMath {

    /**
     * Don't let anyone instantiate this class.
     */
    private StrictMath() {}

    /**
     * The <code>double</code> value that is closer than any other to
     * <i>e</i>, the base of the natural logarithms.
     */
    public static final double E = 2.7182818284590452354;

    /**
     * The <code>double</code> value that is closer than any other to
     * <i>pi</i>, the ratio of the circumference of a circle to its
     * diameter.
     */
    public static final double PI = 3.14159265358979323846;

    /**
     * Returns the trigonometric sine of an angle. Special cases:
     * <ul><li>If the argument is NaN or an infinity, then the 
     * result is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     *
     * @param   a   an angle, in radians.
     * @return  the sine of the argument.
     */
    public static native double sin(double a);
    
    /**
     * Returns the trigonometric cosine of an angle. Special cases:
     * <ul><li>If the argument is NaN or an infinity, then the 
     * result is NaN.</ul>
     *
     * @param   a   an angle, in radians.
     * @return  the cosine of the argument.
     */
    public static native double cos(double a);
   
    /**
     * Returns the trigonometric tangent of an angle. Special cases:
     * <ul><li>If the argument is NaN or an infinity, then the result 
     * is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     *
     * @param   a   an angle, in radians.
     * @return  the tangent of the argument.
     */
    public static native double tan(double a);

    /**
     * Returns the arc sine of a value; the returned angle is in the
     * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
     * <ul><li>If the argument is NaN or its absolute value is greater 
     * than 1, then the result is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     *
     * @param   a   the value whose arc sine is to be returned.
     * @return  the arc sine of the argument.
     */
    public static native double asin(double a);

    /**
     * Returns the arc cosine of a value; the returned angle is in the
     * range 0.0 through <i>pi</i>.  Special case:
     * <ul><li>If the argument is NaN or its absolute value is greater 
     * than 1, then the result is NaN.</ul>
     *
     * @param   a   the value whose arc cosine is to be returned.
     * @return  the arc cosine of the argument.
     */
    public static native double acos(double a); 

    /**
     * Returns the arc tangent of a value; the returned angle is in the
     * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
     * <ul><li>If the argument is NaN, then the result is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     *
     * @param   a   the value whose arc tangent is to be returned.
     * @return  the arc tangent of the argument.
     */
    public static native double atan(double a);

    /**
     * Converts an angle measured in degrees to an approximately
     * equivalent angle measured in radians.  The conversion from
     * degrees to radians is generally inexact.
     *
     * @param   angdeg   an angle, in degrees
     * @return  the measurement of the angle <code>angdeg</code>
     *          in radians.
     */
    public static strictfp double toRadians(double angdeg) {
	return angdeg / 180.0 * PI;
    }

    /**
     * Converts an angle measured in radians to an approximately
     * equivalent angle measured in degrees.  The conversion from
     * radians to degrees is generally inexact; users should
     * <i>not</i> expect <code>cos(toRadians(90.0))</code> to exactly
     * equal <code>0.0</code>.
     *
     * @param   angrad   an angle, in radians
     * @return  the measurement of the angle <code>angrad</code>
     *          in degrees.
     */
    public static strictfp double toDegrees(double angrad) {
	return angrad * 180.0 / PI;
    }

    /**
     * Returns Euler's number <i>e</i> raised to the power of a
     * <code>double</code> value. Special cases:
     * <ul><li>If the argument is NaN, the result is NaN.
     * <li>If the argument is positive infinity, then the result is 
     * positive infinity.
     * <li>If the argument is negative infinity, then the result is 
     * positive zero.</ul>
     *
     * @param   a   the exponent to raise <i>e</i> to.
     * @return  the value <i>e</i><sup><code>a</code></sup>, 
     *		where <i>e</i> is the base of the natural logarithms.
     */
    public static native double exp(double a);

    /**
     * Returns the natural logarithm (base <i>e</i>) of a <code>double</code>
     * value. Special cases:
     * <ul><li>If the argument is NaN or less than zero, then the result 
     * is NaN.
     * <li>If the argument is positive infinity, then the result is 
     * positive infinity.
     * <li>If the argument is positive zero or negative zero, then the 
     * result is negative infinity.</ul>
     *
     * @param   a   a value
     * @return  the value ln&nbsp;<code>a</code>, the natural logarithm of
     *          <code>a</code>.
     */
    public static native double log(double a);


    /**
     * Returns the base 10 logarithm of a <code>double</code> value.
     * Special cases:
     *
     * <ul><li>If the argument is NaN or less than zero, then the result 
     * is NaN.
     * <li>If the argument is positive infinity, then the result is 
     * positive infinity.
     * <li>If the argument is positive zero or negative zero, then the 
     * result is negative infinity.
     * <li> If the argument is equal to 10<sup><i>n</i></sup> for
     * integer <i>n</i>, then the result is <i>n</i>.
     * </ul>
     *
     * @param   a   a value
     * @return  the base 10 logarithm of  <code>a</code>.
     * @since 1.5
     */
    public static native double log10(double a);

    /**
     * Returns the correctly rounded positive square root of a
     * <code>double</code> value.
     * Special cases:
     * <ul><li>If the argument is NaN or less than zero, then the result 
     * is NaN. 
     * <li>If the argument is positive infinity, then the result is positive 
     * infinity. 
     * <li>If the argument is positive zero or negative zero, then the 
     * result is the same as the argument.</ul>
     * Otherwise, the result is the <code>double</code> value closest to 
     * the true mathematical square root of the argument value.
     *
     * @param   a   a value.
     * @return  the positive square root of <code>a</code>.
     */
    public static native double sqrt(double a);

    /**
     * Returns the cube root of a <code>double</code> value.  For
     * positive finite <code>x</code>, <code>cbrt(-x) ==
     * -cbrt(x)</code>; that is, the cube root of a negative value is
     * the negative of the cube root of that value's magnitude.
     * Special cases: 
     *
     * <ul>
     *
     * <li>If the argument is NaN, then the result is NaN.
     *
     * <li>If the argument is infinite, then the result is an infinity
     * with the same sign as the argument.
     *
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.
     * 
     * </ul>
     *
     * @param   a   a value.
     * @return  the cube root of <code>a</code>.
     * @since 1.5
     */
    public static native double cbrt(double a);

    /**
     * Computes the remainder operation on two arguments as prescribed 
     * by the IEEE 754 standard.
     * The remainder value is mathematically equal to 
     * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
     * where <i>n</i> is the mathematical integer closest to the exact 
     * mathematical value of the quotient <code>f1/f2</code>, and if two 
     * mathematical integers are equally close to <code>f1/f2</code>, 
     * then <i>n</i> is the integer that is even. If the remainder is 
     * zero, its sign is the same as the sign of the first argument. 
     * Special cases:
     * <ul><li>If either argument is NaN, or the first argument is infinite, 
     * or the second argument is positive zero or negative zero, then the 
     * result is NaN.
     * <li>If the first argument is finite and the second argument is 
     * infinite, then the result is the same as the first argument.</ul>
     *
     * @param   f1   the dividend.
     * @param   f2   the divisor.
     * @return  the remainder when <code>f1</code> is divided by
     *          <code>f2</code>.
     */
    public static native double IEEEremainder(double f1, double f2);

    /**
     * Returns the smallest (closest to negative infinity)
     * <code>double</code> value that is greater than or equal to the
     * argument and is equal to a mathematical integer. Special cases:
     * <ul><li>If the argument value is already equal to a
     * mathematical integer, then the result is the same as the
     * argument.  <li>If the argument is NaN or an infinity or
     * positive zero or negative zero, then the result is the same as
     * the argument.  <li>If the argument value is less than zero but
     * greater than -1.0, then the result is negative zero.</ul> Note
     * that the value of <code>StrictMath.ceil(x)</code> is exactly the
     * value of <code>-StrictMath.floor(-x)</code>.
     *
     * @param   a   a value.
     * @return  the smallest (closest to negative infinity) 
     *          floating-point value that is greater than or equal to
     *          the argument and is equal to a mathematical integer. 
     */
    public static native double ceil(double a);

    /**
     * Returns the largest (closest to positive infinity)
     * <code>double</code> value that is less than or equal to the
     * argument and is equal to a mathematical integer. Special cases:
     * <ul><li>If the argument value is already equal to a
     * mathematical integer, then the result is the same as the
     * argument.  <li>If the argument is NaN or an infinity or
     * positive zero or negative zero, then the result is the same as
     * the argument.</ul>
     *
     * @param   a   a value.
     * @return  the largest (closest to positive infinity) 
     *          floating-point value that less than or equal to the argument
     *          and is equal to a mathematical integer. 
     */
    public static native double floor(double a);

    /**
     * Returns the <code>double</code> value that is closest in value
     * to the argument and is equal to a mathematical integer. If two
     * <code>double</code> values that are mathematical integers are
     * equally close to the value of the argument, the result is the
     * integer value that is even. Special cases:
     * <ul><li>If the argument value is already equal to a mathematical 
     * integer, then the result is the same as the argument. 
     * <li>If the argument is NaN or an infinity or positive zero or negative 
     * zero, then the result is the same as the argument.</ul>
     *
     * @param   a   a value.
     * @return  the closest floating-point value to <code>a</code> that is
     *          equal to a mathematical integer.
     * @author Joseph D. Darcy
     */
    public static double rint(double a) {
	/*
	 * If the absolute value of a is not less than 2^52, it
	 * is either a finite integer (the double format does not have
	 * enough significand bits for a number that large to have any
	 * fractional portion), an infinity, or a NaN.  In any of
	 * these cases, rint of the argument is the argument.
	 *
	 * Otherwise, the sum (twoToThe52 + a ) will properly round
	 * away any fractional portion of a since ulp(twoToThe52) ==
	 * 1.0; subtracting out twoToThe52 from this sum will then be
	 * exact and leave the rounded integer portion of a.
	 *
	 * This method does *not* need to be declared strictfp to get
	 * fully reproducible results.  Whether or not a method is
	 * declared strictfp can only make a difference in the
	 * returned result if some operation would overflow or
	 * underflow with strictfp semantics.  The operation
	 * (twoToThe52 + a ) cannot overflow since large values of a
	 * are screened out; the add cannot underflow since twoToThe52
	 * is too large.  The subtraction ((twoToThe52 + a ) -
	 * twoToThe52) will be exact as discussed above and thus
	 * cannot overflow or meaningfully underflow.  Finally, the
	 * last multiply in the return statement is by plus or minus
	 * 1.0, which is exact too.
	 */
	double twoToThe52 = (double)(1L << 52); // 2^52
	double sign = FpUtils.rawCopySign(1.0, a); // preserve sign info
	a = Math.abs(a);
	
	if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
	    a = ((twoToThe52 + a ) - twoToThe52);
	} 
	
	return sign * a; // restore original sign
    }

    /**
     * Returns the angle <i>theta</i> from the conversion of rectangular
     * coordinates (<code>x</code>,&nbsp;<code>y</code>) to polar
     * coordinates (r,&nbsp;<i>theta</i>).
     * This method computes the phase <i>theta</i> by computing an arc tangent
     * of <code>y/x</code> in the range of -<i>pi</i> to <i>pi</i>. Special 
     * cases:
     * <ul><li>If either argument is NaN, then the result is NaN. 
     * <li>If the first argument is positive zero and the second argument 
     * is positive, or the first argument is positive and finite and the 
     * second argument is positive infinity, then the result is positive 
     * zero. 
     * <li>If the first argument is negative zero and the second argument 
     * is positive, or the first argument is negative and finite and the 
     * second argument is positive infinity, then the result is negative zero. 
     * <li>If the first argument is positive zero and the second argument 
     * is negative, or the first argument is positive and finite and the 
     * second argument is negative infinity, then the result is the 
     * <code>double</code> value closest to <i>pi</i>. 
     * <li>If the first argument is negative zero and the second argument 
     * is negative, or the first argument is negative and finite and the 
     * second argument is negative infinity, then the result is the 
     * <code>double</code> value closest to -<i>pi</i>. 
     * <li>If the first argument is positive and the second argument is 
     * positive zero or negative zero, or the first argument is positive 
     * infinity and the second argument is finite, then the result is the 
     * <code>double</code> value closest to <i>pi</i>/2. 
     * <li>If the first argument is negative and the second argument is 
     * positive zero or negative zero, or the first argument is negative 
     * infinity and the second argument is finite, then the result is the 
     * <code>double</code> value closest to -<i>pi</i>/2. 
     * <li>If both arguments are positive infinity, then the result is the 
     * <code>double</code> value closest to <i>pi</i>/4. 
     * <li>If the first argument is positive infinity and the second argument 
     * is negative infinity, then the result is the <code>double</code> 
     * value closest to 3*<i>pi</i>/4. 
     * <li>If the first argument is negative infinity and the second argument 
     * is positive infinity, then the result is the <code>double</code> value 
     * closest to -<i>pi</i>/4. 
     * <li>If both arguments are negative infinity, then the result is the 
     * <code>double</code> value closest to -3*<i>pi</i>/4.</ul>
     *
     * @param   y   the ordinate coordinate
     * @param   x   the abscissa coordinate
     * @return  the <i>theta</i> component of the point
     *          (<i>r</i>,&nbsp;<i>theta</i>)
     *          in polar coordinates that corresponds to the point
     *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
     */
    public static native double atan2(double y, double x);


    /**
     * Returns the value of the first argument raised to the power of the
     * second argument. Special cases:
     *
     * <ul><li>If the second argument is positive or negative zero, then the 
     * result is 1.0. 
     * <li>If the second argument is 1.0, then the result is the same as the 
     * first argument.
     * <li>If the second argument is NaN, then the result is NaN. 
     * <li>If the first argument is NaN and the second argument is nonzero, 
     * then the result is NaN. 
     *
     * <li>If
     * <ul>
     * <li>the absolute value of the first argument is greater than 1
     * and the second argument is positive infinity, or
     * <li>the absolute value of the first argument is less than 1 and
     * the second argument is negative infinity,
     * </ul>
     * then the result is positive infinity. 
     *
     * <li>If 
     * <ul>
     * <li>the absolute value of the first argument is greater than 1 and 
     * the second argument is negative infinity, or 
     * <li>the absolute value of the 
     * first argument is less than 1 and the second argument is positive 
     * infinity,
     * </ul>
     * then the result is positive zero. 
     *
     * <li>If the absolute value of the first argument equals 1 and the 
     * second argument is infinite, then the result is NaN. 
     *
     * <li>If 
     * <ul>
     * <li>the first argument is positive zero and the second argument
     * is greater than zero, or
     * <li>the first argument is positive infinity and the second
     * argument is less than zero,
     * </ul>
     * then the result is positive zero. 
     *
     * <li>If 
     * <ul>
     * <li>the first argument is positive zero and the second argument
     * is less than zero, or
     * <li>the first argument is positive infinity and the second
     * argument is greater than zero,
     * </ul>
     * then the result is positive infinity.
     *
     * <li>If 
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is greater than zero but not a finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is less than zero but not a finite odd integer,
     * </ul>
     * then the result is positive zero. 
     *
     * <li>If 
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is a positive finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is a negative finite odd integer,
     * </ul>
     * then the result is negative zero. 
     *
     * <li>If
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is less than zero but not a finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is greater than zero but not a finite odd integer,
     * </ul>
     * then the result is positive infinity. 
     *
     * <li>If 
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is a negative finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is a positive finite odd integer,
     * </ul>
     * then the result is negative infinity. 
     *
     * <li>If the first argument is finite and less than zero
     * <ul>
     * <li> if the second argument is a finite even integer, the
     * result is equal to the result of raising the absolute value of
     * the first argument to the power of the second argument
     *
     * <li>if the second argument is a finite odd integer, the result
     * is equal to the negative of the result of raising the absolute
     * value of the first argument to the power of the second
     * argument
     *
     * <li>if the second argument is finite and not an integer, then
     * the result is NaN.
     * </ul>
     *
     * <li>If both arguments are integers, then the result is exactly equal 
     * to the mathematical result of raising the first argument to the power 
     * of the second argument if that result can in fact be represented 
     * exactly as a <code>double</code> value.</ul>
     * 
     * <p>(In the foregoing descriptions, a floating-point value is
     * considered to be an integer if and only if it is finite and a
     * fixed point of the method {@link #ceil <tt>ceil</tt>} or,
     * equivalently, a fixed point of the method {@link #floor
     * <tt>floor</tt>}. A value is a fixed point of a one-argument
     * method if and only if the result of applying the method to the
     * value is equal to the value.)
     *
     * @param   a   base.
     * @param   b   the exponent.
     * @return  the value <code>a<sup>b</sup></code>.
     */
    public static native double pow(double a, double b);

    /**
     * Returns the closest <code>int</code> to the argument. The 
     * result is rounded to an integer by adding 1/2, taking the 
     * floor of the result, and casting the result to type <code>int</code>. 
     * In other words, the result is equal to the value of the expression:
     * <p><pre>(int)Math.floor(a + 0.5f)</pre>
     * <p>
     * Special cases:
     * <ul><li>If the argument is NaN, the result is 0.
     * <li>If the argument is negative infinity or any value less than or 
     * equal to the value of <code>Integer.MIN_VALUE</code>, the result is 
     * equal to the value of <code>Integer.MIN_VALUE</code>. 
     * <li>If the argument is positive infinity or any value greater than or 
     * equal to the value of <code>Integer.MAX_VALUE</code>, the result is 
     * equal to the value of <code>Integer.MAX_VALUE</code>.</ul> 
     *
     * @param   a   a floating-point value to be rounded to an integer.
     * @return  the value of the argument rounded to the nearest
     *          <code>int</code> value.
     * @see     java.lang.Integer#MAX_VALUE
     * @see     java.lang.Integer#MIN_VALUE
     */
    public static int round(float a) {
	return (int)floor(a + 0.5f);
    }

    /**
     * Returns the closest <code>long</code> to the argument. The result 
     * is rounded to an integer by adding 1/2, taking the floor of the 
     * result, and casting the result to type <code>long</code>. In other 
     * words, the result is equal to the value of the expression:
     * <p><pre>(long)Math.floor(a + 0.5d)</pre>
     * <p>
     * Special cases:
     * <ul><li>If the argument is NaN, the result is 0.
     * <li>If the argument is negative infinity or any value less than or 
     * equal to the value of <code>Long.MIN_VALUE</code>, the result is 
     * equal to the value of <code>Long.MIN_VALUE</code>. 
     * <li>If the argument is positive infinity or any value greater than or 
     * equal to the value of <code>Long.MAX_VALUE</code>, the result is 
     * equal to the value of <code>Long.MAX_VALUE</code>.</ul> 
     *
     * @param   a  a floating-point value to be rounded to a
     *		<code>long</code>. 
     * @return  the value of the argument rounded to the nearest
     *          <code>long</code> value.
     * @see     java.lang.Long#MAX_VALUE
     * @see     java.lang.Long#MIN_VALUE
     */
    public static long round(double a) {
	return (long)floor(a + 0.5d);
    }

    private static Random randomNumberGenerator;

    private static synchronized void initRNG() {
        if (randomNumberGenerator == null) 
            randomNumberGenerator = new Random();
    }

    /**
     * Returns a <code>double</code> value with a positive sign, greater 
     * than or equal to <code>0.0</code> and less than <code>1.0</code>. 
     * Returned values are chosen pseudorandomly with (approximately) 
     * uniform distribution from that range. 
     * 
     * <p>When this method is first called, it creates a single new
     * pseudorandom-number generator, exactly as if by the expression
     * <blockquote><pre>new java.util.Random</pre></blockquote> This
     * new pseudorandom-number generator is used thereafter for all
     * calls to this method and is used nowhere else.
     * 
     * <p>This method is properly synchronized to allow correct use by
     * more than one thread. However, if many threads need to generate
     * pseudorandom numbers at a great rate, it may reduce contention
     * for each thread to have its own pseudorandom number generator.
     *  
     * @return  a pseudorandom <code>double</code> greater than or equal 
     * to <code>0.0</code> and less than <code>1.0</code>.
     * @see     java.util.Random#nextDouble()
     */
    public static double random() {
        if (randomNumberGenerator == null) initRNG();
        return randomNumberGenerator.nextDouble();
    }

    /**
     * Returns the absolute value of an <code>int</code> value..
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned. 
     * 
     * <p>Note that if the argument is equal to the value of
     * <code>Integer.MIN_VALUE</code>, the most negative representable
     * <code>int</code> value, the result is that same value, which is
     * negative.
     *
     * @param   a   the  argument whose absolute value is to be determined.
     * @return  the absolute value of the argument.
     * @see     java.lang.Integer#MIN_VALUE
     */
    public static int abs(int a) {
	return (a < 0) ? -a : a;
    }

    /**
     * Returns the absolute value of a <code>long</code> value.
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned. 
     * 
     * <p>Note that if the argument is equal to the value of
     * <code>Long.MIN_VALUE</code>, the most negative representable
     * <code>long</code> value, the result is that same value, which
     * is negative.
     *
     * @param   a   the  argument whose absolute value is to be determined.
     * @return  the absolute value of the argument.
     * @see     java.lang.Long#MIN_VALUE
     */
    public static long abs(long a) {
	return (a < 0) ? -a : a;
    }

    /**
     * Returns the absolute value of a <code>float</code> value. 
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned. 
     * Special cases:
     * <ul><li>If the argument is positive zero or negative zero, the 
     * result is positive zero. 
     * <li>If the argument is infinite, the result is positive infinity. 
     * <li>If the argument is NaN, the result is NaN.</ul>
     * In other words, the result is the same as the value of the expression: 
     * <p><pre>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</pre>
     *
     * @param   a   the argument whose absolute value is to be determined
     * @return  the absolute value of the argument.
     */
    public static float abs(float a) {
        return (a <= 0.0F) ? 0.0F - a : a;
    }
  
    /**
     * Returns the absolute value of a <code>double</code> value.
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned. 
     * Special cases:
     * <ul><li>If the argument is positive zero or negative zero, the result 
     * is positive zero. 
     * <li>If the argument is infinite, the result is positive infinity. 
     * <li>If the argument is NaN, the result is NaN.</ul>
     * In other words, the result is the same as the value of the expression: 
     * <p><code>Double.longBitsToDouble((Double.doubleToLongBits(a)&lt;&lt;1)&gt;&gt;&gt;1)</code>
     *
     * @param   a   the argument whose absolute value is to be determined
     * @return  the absolute value of the argument.
     */
    public static double abs(double a) {
        return (a <= 0.0D) ? 0.0D - a : a;
    }

    /**
     * Returns the greater of two <code>int</code> values. That is, the 
     * result is the argument closer to the value of 
     * <code>Integer.MAX_VALUE</code>. If the arguments have the same value, 
     * the result is that same value.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of <code>a</code> and <code>b</code>.
     * @see     java.lang.Long#MAX_VALUE
     */
    public static int max(int a, int b) {
	return (a >= b) ? a : b;
    }

    /**
     * Returns the greater of two <code>long</code> values. That is, the 
     * result is the argument closer to the value of 
     * <code>Long.MAX_VALUE</code>. If the arguments have the same value, 
     * the result is that same value. 
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of <code>a</code> and <code>b</code>.
     * @see     java.lang.Long#MAX_VALUE
     */
    public static long max(long a, long b) {
	return (a >= b) ? a : b;
    }

    private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
    private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);

    /**
     * Returns the greater of two <code>float</code> values.  That is,
     * the result is the argument closer to positive infinity. If the
     * arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero. If one
     * argument is positive zero and the other negative zero, the
     * result is positive zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of <code>a</code> and <code>b</code>.
     */
    public static float max(float a, float b) {
        if (a != a) return a;	// a is NaN
	if ((a == 0.0f) && (b == 0.0f)
	    && (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
	    return b;
	}
	return (a >= b) ? a : b;
    }

    /**
     * Returns the greater of two <code>double</code> values.  That
     * is, the result is the argument closer to positive infinity. If
     * the arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero. If one
     * argument is positive zero and the other negative zero, the
     * result is positive zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of <code>a</code> and <code>b</code>.
     */
    public static double max(double a, double b) {
        if (a != a) return a;	// a is NaN
	if ((a == 0.0d) && (b == 0.0d)
	    && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
	    return b;
	}
	return (a >= b) ? a : b;
    }

    /**
     * Returns the smaller of two <code>int</code> values. That is,
     * the result the argument closer to the value of
     * <code>Integer.MIN_VALUE</code>.  If the arguments have the same
     * value, the result is that same value.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of <code>a</code> and <code>b</code>.
     * @see     java.lang.Long#MIN_VALUE
     */
    public static int min(int a, int b) {
	return (a <= b) ? a : b;
    }

    /**
     * Returns the smaller of two <code>long</code> values. That is,
     * the result is the argument closer to the value of
     * <code>Long.MIN_VALUE</code>. If the arguments have the same
     * value, the result is that same value.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of <code>a</code> and <code>b</code>.
     * @see     java.lang.Long#MIN_VALUE
     */
    public static long min(long a, long b) {
	return (a <= b) ? a : b;
    }

    /**
     * Returns the smaller of two <code>float</code> values.  That is,
     * the result is the value closer to negative infinity. If the
     * arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero.  If
     * one argument is positive zero and the other is negative zero,
     * the result is negative zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of <code>a</code> and <code>b.</code>
     */
    public static float min(float a, float b) {
        if (a != a) return a;	// a is NaN
	if ((a == 0.0f) && (b == 0.0f)
	    && (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
	    return b;
	}
	return (a <= b) ? a : b;
    }

    /**
     * Returns the smaller of two <code>double</code> values.  That
     * is, the result is the value closer to negative infinity. If the
     * arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero. If one
     * argument is positive zero and the other is negative zero, the
     * result is negative zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of <code>a</code> and <code>b</code>.
     */
    public static double min(double a, double b) {
        if (a != a) return a;	// a is NaN
	if ((a == 0.0d) && (b == 0.0d)
	    && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
	    return b;
	}
	return (a <= b) ? a : b;
    }

    /**
     * Returns the size of an ulp of the argument.  An ulp of a
     * <code>double</code> value is the positive distance between this
     * floating-point value and the <code>double</code> value next
     * larger in magnitude.  Note that for non-NaN <i>x</i>,
     * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
     * 
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, then the result is NaN.
     * <li> If the argument is positive or negative infinity, then the
     * result is positive infinity.
     * <li> If the argument is positive or negative zero, then the result is
     * <code>Double.MIN_VALUE</code>.
     * <li> If the argument is &plusmn;<code>Double.MAX_VALUE</code>, then
     * the result is equal to 2<sup>971</sup>.
     * </ul>
     *
     * @param d the floating-point value whose ulp is to be returned
     * @return the size of an ulp of the argument
     * @author Joseph D. Darcy
     * @since 1.5
     */
    public static double ulp(double d) {
	return sun.misc.FpUtils.ulp(d);
    }

    /**
     * Returns the size of an ulp of the argument.  An ulp of a
     * <code>float</code> value is the positive distance between this
     * floating-point value and the <code>float</code> value next
     * larger in magnitude.  Note that for non-NaN <i>x</i>,
     * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
     * 
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, then the result is NaN.
     * <li> If the argument is positive or negative infinity, then the
     * result is positive infinity.
     * <li> If the argument is positive or negative zero, then the result is
     * <code>Float.MIN_VALUE</code>.
     * <li> If the argument is &plusmn;<code>Float.MAX_VALUE</code>, then
     * the result is equal to 2<sup>104</sup>.
     * </ul>
     *
     * @param f the floating-point value whose ulp is to be returned
     * @return the size of an ulp of the argument
     * @author Joseph D. Darcy
     * @since 1.5
     */
    public static float ulp(float f) {
	return sun.misc.FpUtils.ulp(f);
    }

    /**
     * Returns the signum function of the argument; zero if the argument
     * is zero, 1.0 if the argument is greater than zero, -1.0 if the
     * argument is less than zero.
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, then the result is NaN.
     * <li> If the argument is positive zero or negative zero, then the
     *      result is the same as the argument.
     * </ul>
     *
     * @param d the floating-point value whose signum is to be returned
     * @return the signum function of the argument
     * @author Joseph D. Darcy
     * @since 1.5
     */
    public static double signum(double d) {
	return sun.misc.FpUtils.signum(d);
    }

    /**
     * Returns the signum function of the argument; zero if the argument
     * is zero, 1.0f if the argument is greater than zero, -1.0f if the
     * argument is less than zero.
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, then the result is NaN.
     * <li> If the argument is positive zero or negative zero, then the
     *      result is the same as the argument.
     * </ul>
     *
     * @param f the floating-point value whose signum is to be returned
     * @return the signum function of the argument
     * @author Joseph D. Darcy
     * @since 1.5
     */
    public static float signum(float f) {
	return sun.misc.FpUtils.signum(f);
    }

    /**
     * Returns the hyperbolic sine of a <code>double</code> value.
     * The hyperbolic sine of <i>x</i> is defined to be
     * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
     * where <i>e</i> is {@linkplain Math#E Euler's number}.
     *
     * <p>Special cases:
     * <ul>
     *
     * <li>If the argument is NaN, then the result is NaN.
     *
     * <li>If the argument is infinite, then the result is an infinity
     * with the same sign as the argument.
     *
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.
     *
     * </ul>
     *
     * @param   x The number whose hyperbolic sine is to be returned.
     * @return  The hyperbolic sine of <code>x</code>.
     * @since 1.5
     */
    public static native double sinh(double x);

    /**
     * Returns the hyperbolic cosine of a <code>double</code> value.
     * The hyperbolic cosine of <i>x</i> is defined to be
     * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
     * where <i>e</i> is {@linkplain Math#E Euler's number}.
     *
     * <p>Special cases:
     * <ul>
     *
     * <li>If the argument is NaN, then the result is NaN.
     *
     * <li>If the argument is infinite, then the result is positive
     * infinity.
     *
     * <li>If the argument is zero, then the result is <code>1.0</code>.
     *
     * </ul>
     *
     * @param   x The number whose hyperbolic cosine is to be returned.
     * @return  The hyperbolic cosine of <code>x</code>.
     * @since 1.5
     */
    public static native double cosh(double x);

    /**
     * Returns the hyperbolic tangent of a <code>double</code> value.
     * The hyperbolic tangent of <i>x</i> is defined to be
     * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
     * in other words, {@linkplain Math#sinh
     * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
     * that the absolute value of the exact tanh is always less than
     * 1.
     *
     * <p>Special cases:
     * <ul>
     *
     * <li>If the argument is NaN, then the result is NaN.
     *
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.
     *
     * <li>If the argument is positive infinity, then the result is
     * <code>+1.0</code>.
     *
     * <li>If the argument is negative infinity, then the result is
     * <code>-1.0</code>.
     *  
     * </ul>
     *
     * @param   x The number whose hyperbolic tangent is to be returned.
     * @return  The hyperbolic tangent of <code>x</code>.
     * @since 1.5
     */
    public static native double tanh(double x);

    /**
     * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
     * without intermediate overflow or underflow.
     *
     * <p>Special cases:
     * <ul>
     *
     * <li> If either argument is infinite, then the result
     * is positive infinity.
     *
     * <li> If either argument is NaN and neither argument is infinite,
     * then the result is NaN.
     *
     * </ul>
     *
     * @param x a value
     * @param y a value
     * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
     * without intermediate overflow or underflow
     * @since 1.5
     */
    public static native double hypot(double x, double y);

    /**
     * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
     * <i>x</i> near 0, the exact sum of
     * <code>expm1(x)</code>&nbsp;+&nbsp;1 is much closer to the true
     * result of <i>e</i><sup>x</sup> than <code>exp(x)</code>.
     *
     * <p>Special cases:
     * <ul>
     * <li>If the argument is NaN, the result is NaN.
     *
     * <li>If the argument is positive infinity, then the result is
     * positive infinity.
     *
     * <li>If the argument is negative infinity, then the result is
     * -1.0.
     *
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.
     *
     * </ul>
     *
     * @param   x   the exponent to raise <i>e</i> to in the computation of
     *              <i>e</i><sup><code>x</code></sup>&nbsp;-1.
     * @return  the value <i>e</i><sup><code>x</code></sup>&nbsp;-&nbsp;1.
     * @since 1.5
     */
    public static native double expm1(double x);

    /**
     * Returns the natural logarithm of the sum of the argument and 1.
     * Note that for small values <code>x</code>, the result of
     * <code>log1p(x)</code> is much closer to the true result of ln(1
     * + <code>x</code>) than the floating-point evaluation of
     * <code>log(1.0+x)</code>.
     *
     * <p>Special cases:
     *
     * <ul>
     *
     * <li>If the argument is NaN or less than -1, then the result is
     * NaN.
     *
     * <li>If the argument is positive infinity, then the result is
     * positive infinity.
     *
     * <li>If the argument is negative one, then the result is
     * negative infinity.
     *
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.
     *
     * </ul>
     *
     * @param   x   a value
     * @return the value ln(<code>x</code>&nbsp;+&nbsp;1), the natural
     * log of <code>x</code>&nbsp;+&nbsp;1
     * @since 1.5
     */
    public static native double log1p(double x);

    /**
     * Returns the first floating-point argument with the sign of the
     * second floating-point argument.  For this method, a NaN
     * {@code sign} argument is always treated as if it were
     * positive.
     *
     * @param magnitude  the parameter providing the magnitude of the result
     * @param sign   the parameter providing the sign of the result
     * @return a value with the magnitude of {@code magnitude}
     * and the sign of {@code sign}.
     * @since 1.6
     */
    public static double copySign(double magnitude, double sign) {
	return sun.misc.FpUtils.copySign(magnitude, sign);
    }
 
    /**
     * Returns the first floating-point argument with the sign of the
     * second floating-point argument.  For this method, a NaN
     * {@code sign} argument is always treated as if it were
     * positive.
     *
     * @param magnitude  the parameter providing the magnitude of the result
     * @param sign   the parameter providing the sign of the result
     * @return a value with the magnitude of {@code magnitude}
     * and the sign of {@code sign}.
     * @since 1.6
     */
    public static float copySign(float magnitude, float sign) {
	return sun.misc.FpUtils.copySign(magnitude, sign);
    }
    /**
     * Returns the unbiased exponent used in the representation of a
     * {@code float}.  Special cases:
     *
     * <ul>
     * <li>If the argument is NaN or infinite, then the result is
     * {@link Float#MAX_EXPONENT} + 1.
     * <li>If the argument is zero or subnormal, then the result is
     * {@link Float#MIN_EXPONENT} -1.
     * </ul>
     * @param f a {@code float} value
     * @since 1.6
     */
    public static int getExponent(float f) {
	return sun.misc.FpUtils.getExponent(f);
    }
 
    /**
     * Returns the unbiased exponent used in the representation of a
     * {@code double}.  Special cases:
     *
     * <ul>
     * <li>If the argument is NaN or infinite, then the result is
     * {@link Double#MAX_EXPONENT} + 1.
     * <li>If the argument is zero or subnormal, then the result is
     * {@link Double#MIN_EXPONENT} -1.
     * </ul>
     * @param d a {@code double} value
     * @since 1.6
     */
    public static int getExponent(double d) {
	return sun.misc.FpUtils.getExponent(d);
    }
 
    /**
     * Returns the floating-point number adjacent to the first
     * argument in the direction of the second argument.  If both
     * arguments compare as equal the second argument is returned.
     *
     * <p>
     * Special cases:
     * <ul>
     * <li> If either argument is a NaN, then NaN is returned.
     *
     * <li> If both arguments are signed zeros, {@code direction}
     * is returned unchanged (as implied by the requirement of
     * returning the second argument if the arguments compare as
     * equal).
     *
     * <li> If {@code start} is
     * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
     * has a value such that the result should have a smaller
     * magnitude, then a zero with the same sign as {@code start}
     * is returned.
     *
     * <li> If {@code start} is infinite and
     * {@code direction} has a value such that the result should
     * have a smaller magnitude, {@link Double#MAX_VALUE} with the
     * same sign as {@code start} is returned.
     *
     * <li> If {@code start} is equal to &plusmn;
     * {@link Double#MAX_VALUE} and {@code direction} has a
     * value such that the result should have a larger magnitude, an
     * infinity with same sign as {@code start} is returned.
     * </ul>
     *
     * @param start  starting floating-point value
     * @param direction value indicating which of
     * {@code start}'s neighbors or {@code start} should
     * be returned
     * @return The floating-point number adjacent to {@code start} in the
     * direction of {@code direction}.
     * @since 1.6
     */
    public static double nextAfter(double start, double direction) {
	return sun.misc.FpUtils.nextAfter(start, direction);
    }
 
    /**
     * Returns the floating-point number adjacent to the first
     * argument in the direction of the second argument.  If both
     * arguments compare as equal a value equivalent to the second argument
     * is returned.
     *
     * <p>
     * Special cases:
     * <ul>
     * <li> If either argument is a NaN, then NaN is returned.
     *
     * <li> If both arguments are signed zeros, a value equivalent
     * to {@code direction} is returned.
     *
     * <li> If {@code start} is
     * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
     * has a value such that the result should have a smaller
     * magnitude, then a zero with the same sign as {@code start}
     * is returned.
     *
     * <li> If {@code start} is infinite and
     * {@code direction} has a value such that the result should
     * have a smaller magnitude, {@link Float#MAX_VALUE} with the
     * same sign as {@code start} is returned.
     *
     * <li> If {@code start} is equal to &plusmn;
     * {@link Float#MAX_VALUE} and {@code direction} has a
     * value such that the result should have a larger magnitude, an
     * infinity with same sign as {@code start} is returned.
     * </ul>
     *
     * @param start  starting floating-point value
     * @param direction value indicating which of
     * {@code start}'s neighbors or {@code start} should
     * be returned
     * @return The floating-point number adjacent to {@code start} in the
     * direction of {@code direction}.
     * @since 1.6
     */
    public static float nextAfter(float start, double direction) {
	return sun.misc.FpUtils.nextAfter(start, direction);
    }
 
    /**
     * Returns the floating-point value adjacent to {@code d} in
     * the direction of positive infinity.  This method is
     * semantically equivalent to {@code nextAfter(d,
     * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
     * implementation may run faster than its equivalent
     * {@code nextAfter} call.
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, the result is NaN.
     *
     * <li> If the argument is positive infinity, the result is
     * positive infinity.
     *
     * <li> If the argument is zero, the result is
     * {@link Double#MIN_VALUE}
     *
     * </ul>
     *
     * @param d starting floating-point value
     * @return The adjacent floating-point value closer to positive
     * infinity.
     * @since 1.6
     */
    public static double nextUp(double d) {
	return sun.misc.FpUtils.nextUp(d);
    }
 
    /**
     * Returns the floating-point value adjacent to {@code f} in
     * the direction of positive infinity.  This method is
     * semantically equivalent to {@code nextAfter(f,
     * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
     * implementation may run faster than its equivalent
     * {@code nextAfter} call.
     *
     * <p>Special Cases:
     * <ul>
     * <li> If the argument is NaN, the result is NaN.
     *
     * <li> If the argument is positive infinity, the result is
     * positive infinity.
     *
     * <li> If the argument is zero, the result is
     * {@link Float#MIN_VALUE}
     *
     * </ul>
     *
     * @param f starting floating-point value
     * @return The adjacent floating-point value closer to positive
     * infinity.
     * @since 1.6
     */
    public static float nextUp(float f) {
	return sun.misc.FpUtils.nextUp(f);
    }
 
 
    /**
     * Return {@code d} &times;
     * 2<sup>{@code scaleFactor}</sup> rounded as if performed
     * by a single correctly rounded floating-point multiply to a
     * member of the double value set.  See the Java
     * Language Specification for a discussion of floating-point
     * value sets.  If the exponent of the result is between {@link
     * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
     * answer is calculated exactly.  If the exponent of the result
     * would be larger than {@code Double.MAX_EXPONENT}, an
     * infinity is returned.  Note that if the result is subnormal,
     * precision may be lost; that is, when {@code scalb(x, n)}
     * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
     * <i>x</i>.  When the result is non-NaN, the result has the same
     * sign as {@code d}.
     *
     *<p>
     * Special cases:
     * <ul>
     * <li> If the first argument is NaN, NaN is returned.
     * <li> If the first argument is infinite, then an infinity of the
     * same sign is returned.
     * <li> If the first argument is zero, then a zero of the same
     * sign is returned.
     * </ul>
     *
     * @param d number to be scaled by a power of two.
     * @param scaleFactor power of 2 used to scale {@code d}
     * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
     * @since 1.6
     */
    public static double scalb(double d, int scaleFactor) {
	return sun.misc.FpUtils.scalb(d, scaleFactor);
    }
 
    /**
     * Return {@code f} &times;
     * 2<sup>{@code scaleFactor}</sup> rounded as if performed
     * by a single correctly rounded floating-point multiply to a
     * member of the float value set.  See the Java
     * Language Specification for a discussion of floating-point
     * value sets.  If the exponent of the result is between {@link
     * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
     * answer is calculated exactly.  If the exponent of the result
     * would be larger than {@code Float.MAX_EXPONENT}, an
     * infinity is returned.  Note that if the result is subnormal,
     * precision may be lost; that is, when {@code scalb(x, n)}
     * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
     * <i>x</i>.  When the result is non-NaN, the result has the same
     * sign as {@code f}.
     *
     *<p>
     * Special cases:
     * <ul>
     * <li> If the first argument is NaN, NaN is returned.
     * <li> If the first argument is infinite, then an infinity of the
     * same sign is returned.
     * <li> If the first argument is zero, then a zero of the same
     * sign is returned.
     * </ul>
     *
     * @param f number to be scaled by a power of two.
     * @param scaleFactor power of 2 used to scale {@code f}
     * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
     * @since 1.6
     */
    public static float scalb(float f, int scaleFactor) {
	return sun.misc.FpUtils.scalb(f, scaleFactor);
    }
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar