/*
* @(#)ConcurrentLinkedQueue.java 1.12 06/04/21
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package java.util.concurrent;
import java.util.*;
import java.util.concurrent.atomic.*;
/**
* An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
* This queue orders elements FIFO (first-in-first-out).
* The <em>head</em> of the queue is that element that has been on the
* queue the longest time.
* The <em>tail</em> of the queue is that element that has been on the
* queue the shortest time. New elements
* are inserted at the tail of the queue, and the queue retrieval
* operations obtain elements at the head of the queue.
* A <tt>ConcurrentLinkedQueue</tt> is an appropriate choice when
* many threads will share access to a common collection.
* This queue does not permit <tt>null</tt> elements.
*
* <p>This implementation employs an efficient "wait-free"
* algorithm based on one described in <a
* href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple,
* Fast, and Practical Non-Blocking and Blocking Concurrent Queue
* Algorithms</a> by Maged M. Michael and Michael L. Scott.
*
* <p>Beware that, unlike in most collections, the <tt>size</tt> method
* is <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these queues, determining the current number
* of elements requires a traversal of the elements.
*
* <p>This class and its iterator implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces.
*
* <p>Memory consistency effects: As with other concurrent
* collections, actions in a thread prior to placing an object into a
* {@code ConcurrentLinkedQueue}
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* actions subsequent to the access or removal of that element from
* the {@code ConcurrentLinkedQueue} in another thread.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.5
* @author Doug Lea
* @param <E> the type of elements held in this collection
*
*/
public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
implements Queue<E>, java.io.Serializable {
private static final long serialVersionUID = 196745693267521676L;
/*
* This is a straight adaptation of Michael & Scott algorithm.
* For explanation, read the paper. The only (minor) algorithmic
* difference is that this version supports lazy deletion of
* internal nodes (method remove(Object)) -- remove CAS'es item
* fields to null. The normal queue operations unlink but then
* pass over nodes with null item fields. Similarly, iteration
* methods ignore those with nulls.
*
* Also note that like most non-blocking algorithms in this
* package, this implementation relies on the fact that in garbage
* collected systems, there is no possibility of ABA problems due
* to recycled nodes, so there is no need to use "counted
* pointers" or related techniques seen in versions used in
* non-GC'ed settings.
*/
private static class Node<E> {
private volatile E item;
private volatile Node<E> next;
private static final
AtomicReferenceFieldUpdater<Node, Node>
nextUpdater =
AtomicReferenceFieldUpdater.newUpdater
(Node.class, Node.class, "next");
private static final
AtomicReferenceFieldUpdater<Node, Object>
itemUpdater =
AtomicReferenceFieldUpdater.newUpdater
(Node.class, Object.class, "item");
Node(E x) { item = x; }
Node(E x, Node<E> n) { item = x; next = n; }
E getItem() {
return item;
}
boolean casItem(E cmp, E val) {
return itemUpdater.compareAndSet(this, cmp, val);
}
void setItem(E val) {
itemUpdater.set(this, val);
}
Node<E> getNext() {
return next;
}
boolean casNext(Node<E> cmp, Node<E> val) {
return nextUpdater.compareAndSet(this, cmp, val);
}
void setNext(Node<E> val) {
nextUpdater.set(this, val);
}
}
private static final
AtomicReferenceFieldUpdater<ConcurrentLinkedQueue, Node>
tailUpdater =
AtomicReferenceFieldUpdater.newUpdater
(ConcurrentLinkedQueue.class, Node.class, "tail");
private static final
AtomicReferenceFieldUpdater<ConcurrentLinkedQueue, Node>
headUpdater =
AtomicReferenceFieldUpdater.newUpdater
(ConcurrentLinkedQueue.class, Node.class, "head");
private boolean casTail(Node<E> cmp, Node<E> val) {
return tailUpdater.compareAndSet(this, cmp, val);
}
private boolean casHead(Node<E> cmp, Node<E> val) {
return headUpdater.compareAndSet(this, cmp, val);
}
/**
* Pointer to header node, initialized to a dummy node. The first
* actual node is at head.getNext().
*/
private transient volatile Node<E> head = new Node<E>(null, null);
/** Pointer to last node on list **/
private transient volatile Node<E> tail = head;
/**
* Creates a <tt>ConcurrentLinkedQueue</tt> that is initially empty.
*/
public ConcurrentLinkedQueue() {}
/**
* Creates a <tt>ConcurrentLinkedQueue</tt>
* initially containing the elements of the given collection,
* added in traversal order of the collection's iterator.
* @param c the collection of elements to initially contain
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public ConcurrentLinkedQueue(Collection<? extends E> c) {
for (Iterator<? extends E> it = c.iterator(); it.hasNext();)
add(it.next());
}
// Have to override just to update the javadoc
/**
* Inserts the specified element at the tail of this queue.
*
* @return <tt>true</tt> (as specified by {@link Collection#add})
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
return offer(e);
}
/**
* Inserts the specified element at the tail of this queue.
*
* @return <tt>true</tt> (as specified by {@link Queue#offer})
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
if (e == null) throw new NullPointerException();
Node<E> n = new Node<E>(e, null);
for (;;) {
Node<E> t = tail;
Node<E> s = t.getNext();
if (t == tail) {
if (s == null) {
if (t.casNext(s, n)) {
casTail(t, n);
return true;
}
} else {
casTail(t, s);
}
}
}
}
public E poll() {
for (;;) {
Node<E> h = head;
Node<E> t = tail;
Node<E> first = h.getNext();
if (h == head) {
if (h == t) {
if (first == null)
return null;
else
casTail(t, first);
} else if (casHead(h, first)) {
E item = first.getItem();
if (item != null) {
first.setItem(null);
return item;
}
// else skip over deleted item, continue loop,
}
}
}
}
public E peek() { // same as poll except don't remove item
for (;;) {
Node<E> h = head;
Node<E> t = tail;
Node<E> first = h.getNext();
if (h == head) {
if (h == t) {
if (first == null)
return null;
else
casTail(t, first);
} else {
E item = first.getItem();
if (item != null)
return item;
else // remove deleted node and continue
casHead(h, first);
}
}
}
}
/**
* Returns the first actual (non-header) node on list. This is yet
* another variant of poll/peek; here returning out the first
* node, not element (so we cannot collapse with peek() without
* introducing race.)
*/
Node<E> first() {
for (;;) {
Node<E> h = head;
Node<E> t = tail;
Node<E> first = h.getNext();
if (h == head) {
if (h == t) {
if (first == null)
return null;
else
casTail(t, first);
} else {
if (first.getItem() != null)
return first;
else // remove deleted node and continue
casHead(h, first);
}
}
}
}
/**
* Returns <tt>true</tt> if this queue contains no elements.
*
* @return <tt>true</tt> if this queue contains no elements
*/
public boolean isEmpty() {
return first() == null;
}
/**
* Returns the number of elements in this queue. If this queue
* contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
* <tt>Integer.MAX_VALUE</tt>.
*
* <p>Beware that, unlike in most collections, this method is
* <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these queues, determining the current
* number of elements requires an O(n) traversal.
*
* @return the number of elements in this queue
*/
public int size() {
int count = 0;
for (Node<E> p = first(); p != null; p = p.getNext()) {
if (p.getItem() != null) {
// Collections.size() spec says to max out
if (++count == Integer.MAX_VALUE)
break;
}
}
return count;
}
/**
* Returns <tt>true</tt> if this queue contains the specified element.
* More formally, returns <tt>true</tt> if and only if this queue contains
* at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
*
* @param o object to be checked for containment in this queue
* @return <tt>true</tt> if this queue contains the specified element
*/
public boolean contains(Object o) {
if (o == null) return false;
for (Node<E> p = first(); p != null; p = p.getNext()) {
E item = p.getItem();
if (item != null &&
o.equals(item))
return true;
}
return false;
}
/**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element <tt>e</tt> such
* that <tt>o.equals(e)</tt>, if this queue contains one or more such
* elements.
* Returns <tt>true</tt> if this queue contained the specified element
* (or equivalently, if this queue changed as a result of the call).
*
* @param o element to be removed from this queue, if present
* @return <tt>true</tt> if this queue changed as a result of the call
*/
public boolean remove(Object o) {
if (o == null) return false;
for (Node<E> p = first(); p != null; p = p.getNext()) {
E item = p.getItem();
if (item != null &&
o.equals(item) &&
p.casItem(item, null))
return true;
}
return false;
}
/**
* Returns an array containing all of the elements in this queue, in
* proper sequence.
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this queue. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this queue
*/
public Object[] toArray() {
// Use ArrayList to deal with resizing.
ArrayList<E> al = new ArrayList<E>();
for (Node<E> p = first(); p != null; p = p.getNext()) {
E item = p.getItem();
if (item != null)
al.add(item);
}
return al.toArray();
}
/**
* Returns an array containing all of the elements in this queue, in
* proper sequence; the runtime type of the returned array is that of
* the specified array. If the queue fits in the specified array, it
* is returned therein. Otherwise, a new array is allocated with the
* runtime type of the specified array and the size of this queue.
*
* <p>If this queue fits in the specified array with room to spare
* (i.e., the array has more elements than this queue), the element in
* the array immediately following the end of the queue is set to
* <tt>null</tt>.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose <tt>x</tt> is a queue known to contain only strings.
* The following code can be used to dump the queue into a newly
* allocated array of <tt>String</tt>:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that <tt>toArray(new Object[0])</tt> is identical in function to
* <tt>toArray()</tt>.
*
* @param a the array into which the elements of the queue are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this queue
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this queue
* @throws NullPointerException if the specified array is null
*/
public <T> T[] toArray(T[] a) {
// try to use sent-in array
int k = 0;
Node<E> p;
for (p = first(); p != null && k < a.length; p = p.getNext()) {
E item = p.getItem();
if (item != null)
a[k++] = (T)item;
}
if (p == null) {
if (k < a.length)
a[k] = null;
return a;
}
// If won't fit, use ArrayList version
ArrayList<E> al = new ArrayList<E>();
for (Node<E> q = first(); q != null; q = q.getNext()) {
E item = q.getItem();
if (item != null)
al.add(item);
}
return (T[])al.toArray(a);
}
/**
* Returns an iterator over the elements in this queue in proper sequence.
* The returned iterator is a "weakly consistent" iterator that
* will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*
* @return an iterator over the elements in this queue in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
}
private class Itr implements Iterator<E> {
/**
* Next node to return item for.
*/
private Node<E> nextNode;
/**
* nextItem holds on to item fields because once we claim
* that an element exists in hasNext(), we must return it in
* the following next() call even if it was in the process of
* being removed when hasNext() was called.
*/
private E nextItem;
/**
* Node of the last returned item, to support remove.
*/
private Node<E> lastRet;
Itr() {
advance();
}
/**
* Moves to next valid node and returns item to return for
* next(), or null if no such.
*/
private E advance() {
lastRet = nextNode;
E x = nextItem;
Node<E> p = (nextNode == null)? first() : nextNode.getNext();
for (;;) {
if (p == null) {
nextNode = null;
nextItem = null;
return x;
}
E item = p.getItem();
if (item != null) {
nextNode = p;
nextItem = item;
return x;
} else // skip over nulls
p = p.getNext();
}
}
public boolean hasNext() {
return nextNode != null;
}
public E next() {
if (nextNode == null) throw new NoSuchElementException();
return advance();
}
public void remove() {
Node<E> l = lastRet;
if (l == null) throw new IllegalStateException();
// rely on a future traversal to relink.
l.setItem(null);
lastRet = null;
}
}
/**
* Save the state to a stream (that is, serialize it).
*
* @serialData All of the elements (each an <tt>E</tt>) in
* the proper order, followed by a null
* @param s the stream
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden stuff
s.defaultWriteObject();
// Write out all elements in the proper order.
for (Node<E> p = first(); p != null; p = p.getNext()) {
Object item = p.getItem();
if (item != null)
s.writeObject(item);
}
// Use trailing null as sentinel
s.writeObject(null);
}
/**
* Reconstitute the Queue instance from a stream (that is,
* deserialize it).
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in capacity, and any hidden stuff
s.defaultReadObject();
head = new Node<E>(null, null);
tail = head;
// Read in all elements and place in queue
for (;;) {
E item = (E)s.readObject();
if (item == null)
break;
else
offer(item);
}
}
}