API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.util.concurrent. ScheduledThreadPoolExecutor View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

/*
 * @(#)ScheduledThreadPoolExecutor.java	1.8 06/03/30
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.util.concurrent;
import java.util.concurrent.atomic.*;
import java.util.*;

/**
 * A {@link ThreadPoolExecutor} that can additionally schedule
 * commands to run after a given delay, or to execute
 * periodically. This class is preferable to {@link java.util.Timer}
 * when multiple worker threads are needed, or when the additional
 * flexibility or capabilities of {@link ThreadPoolExecutor} (which
 * this class extends) are required.
 *
 * <p> Delayed tasks execute no sooner than they are enabled, but
 * without any real-time guarantees about when, after they are
 * enabled, they will commence. Tasks scheduled for exactly the same
 * execution time are enabled in first-in-first-out (FIFO) order of
 * submission.
 *
 * <p>While this class inherits from {@link ThreadPoolExecutor}, a few
 * of the inherited tuning methods are not useful for it. In
 * particular, because it acts as a fixed-sized pool using
 * <tt>corePoolSize</tt> threads and an unbounded queue, adjustments
 * to <tt>maximumPoolSize</tt> have no useful effect.
 *
 * <p><b>Extension notes:</b> This class overrides {@link
 * AbstractExecutorService} <tt>submit</tt> methods to generate
 * internal objects to control per-task delays and scheduling. To
 * preserve functionality, any further overrides of these methods in
 * subclasses must invoke superclass versions, which effectively
 * disables additional task customization. However, this class
 * provides alternative protected extension method
 * <tt>decorateTask</tt> (one version each for <tt>Runnable</tt> and
 * <tt>Callable</tt>) that can be used to customize the concrete task
 * types used to execute commands entered via <tt>execute</tt>,
 * <tt>submit</tt>, <tt>schedule</tt>, <tt>scheduleAtFixedRate</tt>,
 * and <tt>scheduleWithFixedDelay</tt>.  By default, a
 * <tt>ScheduledThreadPoolExecutor</tt> uses a task type extending
 * {@link FutureTask}. However, this may be modified or replaced using
 * subclasses of the form:
 *
 * <pre>
 * public class CustomScheduledExecutor extends ScheduledThreadPoolExecutor {
 *
 *   static class CustomTask&lt;V&gt; implements RunnableScheduledFuture&lt;V&gt; { ... }
 *
 *   protected &lt;V&gt; RunnableScheduledFuture&lt;V&gt; decorateTask(
 *                Runnable r, RunnableScheduledFuture&lt;V&gt; task) {
 *       return new CustomTask&lt;V&gt;(r, task);
 *   }
 *
 *   protected &lt;V&gt; RunnableScheduledFuture&lt;V&gt; decorateTask(
 *                Callable&lt;V&gt; c, RunnableScheduledFuture&lt;V&gt; task) {
 *       return new CustomTask&lt;V&gt;(c, task);
 *   }
 *   // ... add constructors, etc.
 * }
 * </pre>
 * @since 1.5
 * @author Doug Lea
 */
public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor
        implements ScheduledExecutorService {

    /**
     * False if should cancel/suppress periodic tasks on shutdown.
     */
    private volatile boolean continueExistingPeriodicTasksAfterShutdown;

    /**
     * False if should cancel non-periodic tasks on shutdown.
     */
    private volatile boolean executeExistingDelayedTasksAfterShutdown = true;

    /**
     * Sequence number to break scheduling ties, and in turn to
     * guarantee FIFO order among tied entries.
     */
    private static final AtomicLong sequencer = new AtomicLong(0);

    /** Base of nanosecond timings, to avoid wrapping */
    private static final long NANO_ORIGIN = System.nanoTime();

    /**
     * Returns nanosecond time offset by origin
     */
    final long now() {
        return System.nanoTime() - NANO_ORIGIN;
    }

    private class ScheduledFutureTask<V>
            extends FutureTask<V> implements RunnableScheduledFuture<V> {

        /** Sequence number to break ties FIFO */
        private final long sequenceNumber;
        /** The time the task is enabled to execute in nanoTime units */
        private long time;
        /**
         * Period in nanoseconds for repeating tasks.  A positive
         * value indicates fixed-rate execution.  A negative value
         * indicates fixed-delay execution.  A value of 0 indicates a
         * non-repeating task.
         */
        private final long period;

        /**
         * Creates a one-shot action with given nanoTime-based trigger time.
         */
        ScheduledFutureTask(Runnable r, V result, long ns) {
            super(r, result);
            this.time = ns;
            this.period = 0;
            this.sequenceNumber = sequencer.getAndIncrement();
        }

        /**
         * Creates a periodic action with given nano time and period.
         */
        ScheduledFutureTask(Runnable r, V result, long ns, long period) {
            super(r, result);
            this.time = ns;
            this.period = period;
            this.sequenceNumber = sequencer.getAndIncrement();
        }

        /**
         * Creates a one-shot action with given nanoTime-based trigger.
         */
        ScheduledFutureTask(Callable<V> callable, long ns) {
            super(callable);
            this.time = ns;
            this.period = 0;
            this.sequenceNumber = sequencer.getAndIncrement();
        }

        public long getDelay(TimeUnit unit) {
            long d = unit.convert(time - now(), TimeUnit.NANOSECONDS);
            return d;
        }

        public int compareTo(Delayed other) {
            if (other == this) // compare zero ONLY if same object
                return 0;
            if (other instanceof ScheduledFutureTask) {
                ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
                long diff = time - x.time;
                if (diff < 0)
                    return -1;
                else if (diff > 0)
                    return 1;
                else if (sequenceNumber < x.sequenceNumber)
                    return -1;
                else
                    return 1;
            }
            long d = (getDelay(TimeUnit.NANOSECONDS) -
                      other.getDelay(TimeUnit.NANOSECONDS));
            return (d == 0)? 0 : ((d < 0)? -1 : 1);
        }

        /**
         * Returns true if this is a periodic (not a one-shot) action.
         *
         * @return true if periodic
         */
        public boolean isPeriodic() {
            return period != 0;
        }

        /**
         * Runs a periodic task.
         */
        private void runPeriodic() {
            boolean ok = ScheduledFutureTask.super.runAndReset();
            boolean down = isShutdown();
            // Reschedule if not cancelled and not shutdown or policy allows
            if (ok && (!down ||
                       (getContinueExistingPeriodicTasksAfterShutdownPolicy() &&
                        !isTerminating()))) {
                long p = period;
                if (p > 0)
                    time += p;
                else
                    time = now() - p;
                ScheduledThreadPoolExecutor.super.getQueue().add(this);
            }
            // This might have been the final executed delayed
            // task.  Wake up threads to check.
            else if (down)
                interruptIdleWorkers();
        }

        /**
         * Overrides FutureTask version so as to reset/requeue if periodic.
         */
        public void run() {
            if (isPeriodic())
                runPeriodic();
            else
                ScheduledFutureTask.super.run();
        }
    }

    /**
     * Specialized variant of ThreadPoolExecutor.execute for delayed tasks.
     */
    private void delayedExecute(Runnable command) {
        if (isShutdown()) {
            reject(command);
            return;
        }
        // Prestart a thread if necessary. We cannot prestart it
        // running the task because the task (probably) shouldn't be
        // run yet, so thread will just idle until delay elapses.
        if (getPoolSize() < getCorePoolSize())
            prestartCoreThread();

        super.getQueue().add(command);
    }

    /**
     * Cancels and clears the queue of all tasks that should not be run
     * due to shutdown policy.
     */
    private void cancelUnwantedTasks() {
        boolean keepDelayed = getExecuteExistingDelayedTasksAfterShutdownPolicy();
        boolean keepPeriodic = getContinueExistingPeriodicTasksAfterShutdownPolicy();
        if (!keepDelayed && !keepPeriodic)
            super.getQueue().clear();
        else if (keepDelayed || keepPeriodic) {
            Object[] entries = super.getQueue().toArray();
            for (int i = 0; i < entries.length; ++i) {
                Object e = entries[i];
                if (e instanceof RunnableScheduledFuture) {
                    RunnableScheduledFuture<?> t = (RunnableScheduledFuture<?>)e;
                    if (t.isPeriodic()? !keepPeriodic : !keepDelayed)
                        t.cancel(false);
                }
            }
            entries = null;
            purge();
        }
    }

    public boolean remove(Runnable task) {
        if (!(task instanceof RunnableScheduledFuture))
            return false;
        return getQueue().remove(task);
    }

    /**
     * Modifies or replaces the task used to execute a runnable.
     * This method can be used to override the concrete
     * class used for managing internal tasks.
     * The default implementation simply returns the given task.
     *
     * @param runnable the submitted Runnable
     * @param task the task created to execute the runnable
     * @return a task that can execute the runnable
     * @since 1.6
     */
    protected <V> RunnableScheduledFuture<V> decorateTask(
        Runnable runnable, RunnableScheduledFuture<V> task) {
        return task;
    }

    /**
     * Modifies or replaces the task used to execute a callable.
     * This method can be used to override the concrete
     * class used for managing internal tasks.
     * The default implementation simply returns the given task.
     *
     * @param callable the submitted Callable
     * @param task the task created to execute the callable
     * @return a task that can execute the callable
     * @since 1.6
     */
    protected <V> RunnableScheduledFuture<V> decorateTask(
        Callable<V> callable, RunnableScheduledFuture<V> task) {
        return task;
    }

    /**
     * Creates a new ScheduledThreadPoolExecutor with the given core
     * pool size.
     *
     * @param corePoolSize the number of threads to keep in the pool,
     * even if they are idle
     * @throws IllegalArgumentException if <tt>corePoolSize &lt; 0</tt>
     */
    public ScheduledThreadPoolExecutor(int corePoolSize) {
        super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
              new DelayedWorkQueue());
    }

    /**
     * Creates a new ScheduledThreadPoolExecutor with the given
     * initial parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool,
     * even if they are idle
     * @param threadFactory the factory to use when the executor
     * creates a new thread
     * @throws IllegalArgumentException if <tt>corePoolSize &lt; 0</tt>
     * @throws NullPointerException if threadFactory is null
     */
    public ScheduledThreadPoolExecutor(int corePoolSize,
                             ThreadFactory threadFactory) {
        super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
              new DelayedWorkQueue(), threadFactory);
    }

    /**
     * Creates a new ScheduledThreadPoolExecutor with the given
     * initial parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool,
     * even if they are idle
     * @param handler the handler to use when execution is blocked
     * because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if <tt>corePoolSize &lt; 0</tt>
     * @throws NullPointerException if handler is null
     */
    public ScheduledThreadPoolExecutor(int corePoolSize,
                              RejectedExecutionHandler handler) {
        super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
              new DelayedWorkQueue(), handler);
    }

    /**
     * Creates a new ScheduledThreadPoolExecutor with the given
     * initial parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool,
     * even if they are idle
     * @param threadFactory the factory to use when the executor
     * creates a new thread
     * @param handler the handler to use when execution is blocked
     * because the thread bounds and queue capacities are reached.
     * @throws IllegalArgumentException if <tt>corePoolSize &lt; 0</tt>
     * @throws NullPointerException if threadFactory or handler is null
     */
    public ScheduledThreadPoolExecutor(int corePoolSize,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
              new DelayedWorkQueue(), threadFactory, handler);
    }

    public ScheduledFuture<?> schedule(Runnable command,
                                       long delay,
                                       TimeUnit unit) {
        if (command == null || unit == null)
            throw new NullPointerException();
        long triggerTime = now() + unit.toNanos(delay);
        RunnableScheduledFuture<?> t = decorateTask(command,
            new ScheduledFutureTask<Boolean>(command, null, triggerTime));
        delayedExecute(t);
        return t;
    }

    public <V> ScheduledFuture<V> schedule(Callable<V> callable,
                                           long delay,
                                           TimeUnit unit) {
        if (callable == null || unit == null)
            throw new NullPointerException();
        if (delay < 0) delay = 0;
        long triggerTime = now() + unit.toNanos(delay);
        RunnableScheduledFuture<V> t = decorateTask(callable,
            new ScheduledFutureTask<V>(callable, triggerTime));
        delayedExecute(t);
        return t;
    }

    public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
                                                  long initialDelay,
                                                  long period,
                                                  TimeUnit unit) {
        if (command == null || unit == null)
            throw new NullPointerException();
        if (period <= 0)
            throw new IllegalArgumentException();
        if (initialDelay < 0) initialDelay = 0;
        long triggerTime = now() + unit.toNanos(initialDelay);
        RunnableScheduledFuture<?> t = decorateTask(command,
            new ScheduledFutureTask<Object>(command,
                                            null,
                                            triggerTime,
                                            unit.toNanos(period)));
        delayedExecute(t);
        return t;
    }

    public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
                                                     long initialDelay,
                                                     long delay,
                                                     TimeUnit unit) {
        if (command == null || unit == null)
            throw new NullPointerException();
        if (delay <= 0)
            throw new IllegalArgumentException();
        if (initialDelay < 0) initialDelay = 0;
        long triggerTime = now() + unit.toNanos(initialDelay);
        RunnableScheduledFuture<?> t = decorateTask(command,
            new ScheduledFutureTask<Boolean>(command,
                                             null,
                                             triggerTime,
                                             unit.toNanos(-delay)));
        delayedExecute(t);
        return t;
    }


    /**
     * Executes command with zero required delay. This has effect
     * equivalent to <tt>schedule(command, 0, anyUnit)</tt>.  Note
     * that inspections of the queue and of the list returned by
     * <tt>shutdownNow</tt> will access the zero-delayed
     * {@link ScheduledFuture}, not the <tt>command</tt> itself.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     * <tt>RejectedExecutionHandler</tt>, if task cannot be accepted
     * for execution because the executor has been shut down.
     * @throws NullPointerException if command is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        schedule(command, 0, TimeUnit.NANOSECONDS);
    }

    // Override AbstractExecutorService methods

    public Future<?> submit(Runnable task) {
        return schedule(task, 0, TimeUnit.NANOSECONDS);
    }

    public <T> Future<T> submit(Runnable task, T result) {
        return schedule(Executors.callable(task, result),
                        0, TimeUnit.NANOSECONDS);
    }

    public <T> Future<T> submit(Callable<T> task) {
        return schedule(task, 0, TimeUnit.NANOSECONDS);
    }

    /**
     * Sets the policy on whether to continue executing existing periodic
     * tasks even when this executor has been <tt>shutdown</tt>. In
     * this case, these tasks will only terminate upon
     * <tt>shutdownNow</tt>, or after setting the policy to
     * <tt>false</tt> when already shutdown. This value is by default
     * false.
     *
     * @param value if true, continue after shutdown, else don't.
     * @see #getContinueExistingPeriodicTasksAfterShutdownPolicy
     */
    public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value) {
        continueExistingPeriodicTasksAfterShutdown = value;
        if (!value && isShutdown())
            cancelUnwantedTasks();
    }

    /**
     * Gets the policy on whether to continue executing existing
     * periodic tasks even when this executor has been
     * <tt>shutdown</tt>. In this case, these tasks will only
     * terminate upon <tt>shutdownNow</tt> or after setting the policy
     * to <tt>false</tt> when already shutdown. This value is by
     * default false.
     *
     * @return true if will continue after shutdown
     * @see #setContinueExistingPeriodicTasksAfterShutdownPolicy
     */
    public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy() {
        return continueExistingPeriodicTasksAfterShutdown;
    }

    /**
     * Sets the policy on whether to execute existing delayed
     * tasks even when this executor has been <tt>shutdown</tt>. In
     * this case, these tasks will only terminate upon
     * <tt>shutdownNow</tt>, or after setting the policy to
     * <tt>false</tt> when already shutdown. This value is by default
     * true.
     *
     * @param value if true, execute after shutdown, else don't.
     * @see #getExecuteExistingDelayedTasksAfterShutdownPolicy
     */
    public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value) {
        executeExistingDelayedTasksAfterShutdown = value;
        if (!value && isShutdown())
            cancelUnwantedTasks();
    }

    /**
     * Gets the policy on whether to execute existing delayed
     * tasks even when this executor has been <tt>shutdown</tt>. In
     * this case, these tasks will only terminate upon
     * <tt>shutdownNow</tt>, or after setting the policy to
     * <tt>false</tt> when already shutdown. This value is by default
     * true.
     *
     * @return true if will execute after shutdown
     * @see #setExecuteExistingDelayedTasksAfterShutdownPolicy
     */
    public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy() {
        return executeExistingDelayedTasksAfterShutdown;
    }


    /**
     * Initiates an orderly shutdown in which previously submitted
     * tasks are executed, but no new tasks will be accepted. If the
     * <tt>ExecuteExistingDelayedTasksAfterShutdownPolicy</tt> has
     * been set <tt>false</tt>, existing delayed tasks whose delays
     * have not yet elapsed are cancelled. And unless the
     * <tt>ContinueExistingPeriodicTasksAfterShutdownPolicy</tt> has
     * been set <tt>true</tt>, future executions of existing periodic
     * tasks will be cancelled.
     */
    public void shutdown() {
        cancelUnwantedTasks();
        super.shutdown();
    }

    /**
     * Attempts to stop all actively executing tasks, halts the
     * processing of waiting tasks, and returns a list of the tasks
     * that were awaiting execution.
     *
     * <p>There are no guarantees beyond best-effort attempts to stop
     * processing actively executing tasks.  This implementation
     * cancels tasks via {@link Thread#interrupt}, so any task that
     * fails to respond to interrupts may never terminate.
     *
     * @return list of tasks that never commenced execution.  Each
     * element of this list is a {@link ScheduledFuture},
     * including those tasks submitted using <tt>execute</tt>, which
     * are for scheduling purposes used as the basis of a zero-delay
     * <tt>ScheduledFuture</tt>.
     * @throws SecurityException {@inheritDoc}
     */
    public List<Runnable> shutdownNow() {
        return super.shutdownNow();
    }

    /**
     * Returns the task queue used by this executor.  Each element of
     * this queue is a {@link ScheduledFuture}, including those
     * tasks submitted using <tt>execute</tt> which are for scheduling
     * purposes used as the basis of a zero-delay
     * <tt>ScheduledFuture</tt>. Iteration over this queue is
     * <em>not</em> guaranteed to traverse tasks in the order in
     * which they will execute.
     *
     * @return the task queue
     */
    public BlockingQueue<Runnable> getQueue() {
        return super.getQueue();
    }

    /**
     * An annoying wrapper class to convince javac to use a
     * DelayQueue<RunnableScheduledFuture> as a BlockingQueue<Runnable>
     */
    private static class DelayedWorkQueue
        extends AbstractCollection<Runnable>
        implements BlockingQueue<Runnable> {

        private final DelayQueue<RunnableScheduledFuture> dq = new DelayQueue<RunnableScheduledFuture>();
        public Runnable poll() { return dq.poll(); }
        public Runnable peek() { return dq.peek(); }
        public Runnable take() throws InterruptedException { return dq.take(); }
        public Runnable poll(long timeout, TimeUnit unit) throws InterruptedException {
            return dq.poll(timeout, unit);
        }

        public boolean add(Runnable x) {
	    return dq.add((RunnableScheduledFuture)x);
	}
        public boolean offer(Runnable x) {
	    return dq.offer((RunnableScheduledFuture)x);
	}
        public void put(Runnable x) {
            dq.put((RunnableScheduledFuture)x);
        }
        public boolean offer(Runnable x, long timeout, TimeUnit unit) {
            return dq.offer((RunnableScheduledFuture)x, timeout, unit);
        }

        public Runnable remove() { return dq.remove(); }
        public Runnable element() { return dq.element(); }
        public void clear() { dq.clear(); }
        public int drainTo(Collection<? super Runnable> c) { return dq.drainTo(c); }
        public int drainTo(Collection<? super Runnable> c, int maxElements) {
            return dq.drainTo(c, maxElements);
        }

        public int remainingCapacity() { return dq.remainingCapacity(); }
        public boolean remove(Object x) { return dq.remove(x); }
        public boolean contains(Object x) { return dq.contains(x); }
        public int size() { return dq.size(); }
        public boolean isEmpty() { return dq.isEmpty(); }
        public Object[] toArray() { return dq.toArray(); }
        public <T> T[] toArray(T[] array) { return dq.toArray(array); }
        public Iterator<Runnable> iterator() {
            return new Iterator<Runnable>() {
                private Iterator<RunnableScheduledFuture> it = dq.iterator();
                public boolean hasNext() { return it.hasNext(); }
                public Runnable next() { return it.next(); }
                public void remove() { it.remove(); }
            };
        }
    }
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar