/*
* @(#)ScheduledThreadPoolExecutor.java 1.8 06/03/30
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package java.util.concurrent;
import java.util.concurrent.atomic.*;
import java.util.*;
/**
* A {@link ThreadPoolExecutor} that can additionally schedule
* commands to run after a given delay, or to execute
* periodically. This class is preferable to {@link java.util.Timer}
* when multiple worker threads are needed, or when the additional
* flexibility or capabilities of {@link ThreadPoolExecutor} (which
* this class extends) are required.
*
* <p> Delayed tasks execute no sooner than they are enabled, but
* without any real-time guarantees about when, after they are
* enabled, they will commence. Tasks scheduled for exactly the same
* execution time are enabled in first-in-first-out (FIFO) order of
* submission.
*
* <p>While this class inherits from {@link ThreadPoolExecutor}, a few
* of the inherited tuning methods are not useful for it. In
* particular, because it acts as a fixed-sized pool using
* <tt>corePoolSize</tt> threads and an unbounded queue, adjustments
* to <tt>maximumPoolSize</tt> have no useful effect.
*
* <p><b>Extension notes:</b> This class overrides {@link
* AbstractExecutorService} <tt>submit</tt> methods to generate
* internal objects to control per-task delays and scheduling. To
* preserve functionality, any further overrides of these methods in
* subclasses must invoke superclass versions, which effectively
* disables additional task customization. However, this class
* provides alternative protected extension method
* <tt>decorateTask</tt> (one version each for <tt>Runnable</tt> and
* <tt>Callable</tt>) that can be used to customize the concrete task
* types used to execute commands entered via <tt>execute</tt>,
* <tt>submit</tt>, <tt>schedule</tt>, <tt>scheduleAtFixedRate</tt>,
* and <tt>scheduleWithFixedDelay</tt>. By default, a
* <tt>ScheduledThreadPoolExecutor</tt> uses a task type extending
* {@link FutureTask}. However, this may be modified or replaced using
* subclasses of the form:
*
* <pre>
* public class CustomScheduledExecutor extends ScheduledThreadPoolExecutor {
*
* static class CustomTask<V> implements RunnableScheduledFuture<V> { ... }
*
* protected <V> RunnableScheduledFuture<V> decorateTask(
* Runnable r, RunnableScheduledFuture<V> task) {
* return new CustomTask<V>(r, task);
* }
*
* protected <V> RunnableScheduledFuture<V> decorateTask(
* Callable<V> c, RunnableScheduledFuture<V> task) {
* return new CustomTask<V>(c, task);
* }
* // ... add constructors, etc.
* }
* </pre>
* @since 1.5
* @author Doug Lea
*/
public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor
implements ScheduledExecutorService {
/**
* False if should cancel/suppress periodic tasks on shutdown.
*/
private volatile boolean continueExistingPeriodicTasksAfterShutdown;
/**
* False if should cancel non-periodic tasks on shutdown.
*/
private volatile boolean executeExistingDelayedTasksAfterShutdown = true;
/**
* Sequence number to break scheduling ties, and in turn to
* guarantee FIFO order among tied entries.
*/
private static final AtomicLong sequencer = new AtomicLong(0);
/** Base of nanosecond timings, to avoid wrapping */
private static final long NANO_ORIGIN = System.nanoTime();
/**
* Returns nanosecond time offset by origin
*/
final long now() {
return System.nanoTime() - NANO_ORIGIN;
}
private class ScheduledFutureTask<V>
extends FutureTask<V> implements RunnableScheduledFuture<V> {
/** Sequence number to break ties FIFO */
private final long sequenceNumber;
/** The time the task is enabled to execute in nanoTime units */
private long time;
/**
* Period in nanoseconds for repeating tasks. A positive
* value indicates fixed-rate execution. A negative value
* indicates fixed-delay execution. A value of 0 indicates a
* non-repeating task.
*/
private final long period;
/**
* Creates a one-shot action with given nanoTime-based trigger time.
*/
ScheduledFutureTask(Runnable r, V result, long ns) {
super(r, result);
this.time = ns;
this.period = 0;
this.sequenceNumber = sequencer.getAndIncrement();
}
/**
* Creates a periodic action with given nano time and period.
*/
ScheduledFutureTask(Runnable r, V result, long ns, long period) {
super(r, result);
this.time = ns;
this.period = period;
this.sequenceNumber = sequencer.getAndIncrement();
}
/**
* Creates a one-shot action with given nanoTime-based trigger.
*/
ScheduledFutureTask(Callable<V> callable, long ns) {
super(callable);
this.time = ns;
this.period = 0;
this.sequenceNumber = sequencer.getAndIncrement();
}
public long getDelay(TimeUnit unit) {
long d = unit.convert(time - now(), TimeUnit.NANOSECONDS);
return d;
}
public int compareTo(Delayed other) {
if (other == this) // compare zero ONLY if same object
return 0;
if (other instanceof ScheduledFutureTask) {
ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
long diff = time - x.time;
if (diff < 0)
return -1;
else if (diff > 0)
return 1;
else if (sequenceNumber < x.sequenceNumber)
return -1;
else
return 1;
}
long d = (getDelay(TimeUnit.NANOSECONDS) -
other.getDelay(TimeUnit.NANOSECONDS));
return (d == 0)? 0 : ((d < 0)? -1 : 1);
}
/**
* Returns true if this is a periodic (not a one-shot) action.
*
* @return true if periodic
*/
public boolean isPeriodic() {
return period != 0;
}
/**
* Runs a periodic task.
*/
private void runPeriodic() {
boolean ok = ScheduledFutureTask.super.runAndReset();
boolean down = isShutdown();
// Reschedule if not cancelled and not shutdown or policy allows
if (ok && (!down ||
(getContinueExistingPeriodicTasksAfterShutdownPolicy() &&
!isTerminating()))) {
long p = period;
if (p > 0)
time += p;
else
time = now() - p;
ScheduledThreadPoolExecutor.super.getQueue().add(this);
}
// This might have been the final executed delayed
// task. Wake up threads to check.
else if (down)
interruptIdleWorkers();
}
/**
* Overrides FutureTask version so as to reset/requeue if periodic.
*/
public void run() {
if (isPeriodic())
runPeriodic();
else
ScheduledFutureTask.super.run();
}
}
/**
* Specialized variant of ThreadPoolExecutor.execute for delayed tasks.
*/
private void delayedExecute(Runnable command) {
if (isShutdown()) {
reject(command);
return;
}
// Prestart a thread if necessary. We cannot prestart it
// running the task because the task (probably) shouldn't be
// run yet, so thread will just idle until delay elapses.
if (getPoolSize() < getCorePoolSize())
prestartCoreThread();
super.getQueue().add(command);
}
/**
* Cancels and clears the queue of all tasks that should not be run
* due to shutdown policy.
*/
private void cancelUnwantedTasks() {
boolean keepDelayed = getExecuteExistingDelayedTasksAfterShutdownPolicy();
boolean keepPeriodic = getContinueExistingPeriodicTasksAfterShutdownPolicy();
if (!keepDelayed && !keepPeriodic)
super.getQueue().clear();
else if (keepDelayed || keepPeriodic) {
Object[] entries = super.getQueue().toArray();
for (int i = 0; i < entries.length; ++i) {
Object e = entries[i];
if (e instanceof RunnableScheduledFuture) {
RunnableScheduledFuture<?> t = (RunnableScheduledFuture<?>)e;
if (t.isPeriodic()? !keepPeriodic : !keepDelayed)
t.cancel(false);
}
}
entries = null;
purge();
}
}
public boolean remove(Runnable task) {
if (!(task instanceof RunnableScheduledFuture))
return false;
return getQueue().remove(task);
}
/**
* Modifies or replaces the task used to execute a runnable.
* This method can be used to override the concrete
* class used for managing internal tasks.
* The default implementation simply returns the given task.
*
* @param runnable the submitted Runnable
* @param task the task created to execute the runnable
* @return a task that can execute the runnable
* @since 1.6
*/
protected <V> RunnableScheduledFuture<V> decorateTask(
Runnable runnable, RunnableScheduledFuture<V> task) {
return task;
}
/**
* Modifies or replaces the task used to execute a callable.
* This method can be used to override the concrete
* class used for managing internal tasks.
* The default implementation simply returns the given task.
*
* @param callable the submitted Callable
* @param task the task created to execute the callable
* @return a task that can execute the callable
* @since 1.6
*/
protected <V> RunnableScheduledFuture<V> decorateTask(
Callable<V> callable, RunnableScheduledFuture<V> task) {
return task;
}
/**
* Creates a new ScheduledThreadPoolExecutor with the given core
* pool size.
*
* @param corePoolSize the number of threads to keep in the pool,
* even if they are idle
* @throws IllegalArgumentException if <tt>corePoolSize < 0</tt>
*/
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
new DelayedWorkQueue());
}
/**
* Creates a new ScheduledThreadPoolExecutor with the given
* initial parameters.
*
* @param corePoolSize the number of threads to keep in the pool,
* even if they are idle
* @param threadFactory the factory to use when the executor
* creates a new thread
* @throws IllegalArgumentException if <tt>corePoolSize < 0</tt>
* @throws NullPointerException if threadFactory is null
*/
public ScheduledThreadPoolExecutor(int corePoolSize,
ThreadFactory threadFactory) {
super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
new DelayedWorkQueue(), threadFactory);
}
/**
* Creates a new ScheduledThreadPoolExecutor with the given
* initial parameters.
*
* @param corePoolSize the number of threads to keep in the pool,
* even if they are idle
* @param handler the handler to use when execution is blocked
* because the thread bounds and queue capacities are reached
* @throws IllegalArgumentException if <tt>corePoolSize < 0</tt>
* @throws NullPointerException if handler is null
*/
public ScheduledThreadPoolExecutor(int corePoolSize,
RejectedExecutionHandler handler) {
super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
new DelayedWorkQueue(), handler);
}
/**
* Creates a new ScheduledThreadPoolExecutor with the given
* initial parameters.
*
* @param corePoolSize the number of threads to keep in the pool,
* even if they are idle
* @param threadFactory the factory to use when the executor
* creates a new thread
* @param handler the handler to use when execution is blocked
* because the thread bounds and queue capacities are reached.
* @throws IllegalArgumentException if <tt>corePoolSize < 0</tt>
* @throws NullPointerException if threadFactory or handler is null
*/
public ScheduledThreadPoolExecutor(int corePoolSize,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
new DelayedWorkQueue(), threadFactory, handler);
}
public ScheduledFuture<?> schedule(Runnable command,
long delay,
TimeUnit unit) {
if (command == null || unit == null)
throw new NullPointerException();
long triggerTime = now() + unit.toNanos(delay);
RunnableScheduledFuture<?> t = decorateTask(command,
new ScheduledFutureTask<Boolean>(command, null, triggerTime));
delayedExecute(t);
return t;
}
public <V> ScheduledFuture<V> schedule(Callable<V> callable,
long delay,
TimeUnit unit) {
if (callable == null || unit == null)
throw new NullPointerException();
if (delay < 0) delay = 0;
long triggerTime = now() + unit.toNanos(delay);
RunnableScheduledFuture<V> t = decorateTask(callable,
new ScheduledFutureTask<V>(callable, triggerTime));
delayedExecute(t);
return t;
}
public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
long initialDelay,
long period,
TimeUnit unit) {
if (command == null || unit == null)
throw new NullPointerException();
if (period <= 0)
throw new IllegalArgumentException();
if (initialDelay < 0) initialDelay = 0;
long triggerTime = now() + unit.toNanos(initialDelay);
RunnableScheduledFuture<?> t = decorateTask(command,
new ScheduledFutureTask<Object>(command,
null,
triggerTime,
unit.toNanos(period)));
delayedExecute(t);
return t;
}
public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
long initialDelay,
long delay,
TimeUnit unit) {
if (command == null || unit == null)
throw new NullPointerException();
if (delay <= 0)
throw new IllegalArgumentException();
if (initialDelay < 0) initialDelay = 0;
long triggerTime = now() + unit.toNanos(initialDelay);
RunnableScheduledFuture<?> t = decorateTask(command,
new ScheduledFutureTask<Boolean>(command,
null,
triggerTime,
unit.toNanos(-delay)));
delayedExecute(t);
return t;
}
/**
* Executes command with zero required delay. This has effect
* equivalent to <tt>schedule(command, 0, anyUnit)</tt>. Note
* that inspections of the queue and of the list returned by
* <tt>shutdownNow</tt> will access the zero-delayed
* {@link ScheduledFuture}, not the <tt>command</tt> itself.
*
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* <tt>RejectedExecutionHandler</tt>, if task cannot be accepted
* for execution because the executor has been shut down.
* @throws NullPointerException if command is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
schedule(command, 0, TimeUnit.NANOSECONDS);
}
// Override AbstractExecutorService methods
public Future<?> submit(Runnable task) {
return schedule(task, 0, TimeUnit.NANOSECONDS);
}
public <T> Future<T> submit(Runnable task, T result) {
return schedule(Executors.callable(task, result),
0, TimeUnit.NANOSECONDS);
}
public <T> Future<T> submit(Callable<T> task) {
return schedule(task, 0, TimeUnit.NANOSECONDS);
}
/**
* Sets the policy on whether to continue executing existing periodic
* tasks even when this executor has been <tt>shutdown</tt>. In
* this case, these tasks will only terminate upon
* <tt>shutdownNow</tt>, or after setting the policy to
* <tt>false</tt> when already shutdown. This value is by default
* false.
*
* @param value if true, continue after shutdown, else don't.
* @see #getContinueExistingPeriodicTasksAfterShutdownPolicy
*/
public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value) {
continueExistingPeriodicTasksAfterShutdown = value;
if (!value && isShutdown())
cancelUnwantedTasks();
}
/**
* Gets the policy on whether to continue executing existing
* periodic tasks even when this executor has been
* <tt>shutdown</tt>. In this case, these tasks will only
* terminate upon <tt>shutdownNow</tt> or after setting the policy
* to <tt>false</tt> when already shutdown. This value is by
* default false.
*
* @return true if will continue after shutdown
* @see #setContinueExistingPeriodicTasksAfterShutdownPolicy
*/
public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy() {
return continueExistingPeriodicTasksAfterShutdown;
}
/**
* Sets the policy on whether to execute existing delayed
* tasks even when this executor has been <tt>shutdown</tt>. In
* this case, these tasks will only terminate upon
* <tt>shutdownNow</tt>, or after setting the policy to
* <tt>false</tt> when already shutdown. This value is by default
* true.
*
* @param value if true, execute after shutdown, else don't.
* @see #getExecuteExistingDelayedTasksAfterShutdownPolicy
*/
public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value) {
executeExistingDelayedTasksAfterShutdown = value;
if (!value && isShutdown())
cancelUnwantedTasks();
}
/**
* Gets the policy on whether to execute existing delayed
* tasks even when this executor has been <tt>shutdown</tt>. In
* this case, these tasks will only terminate upon
* <tt>shutdownNow</tt>, or after setting the policy to
* <tt>false</tt> when already shutdown. This value is by default
* true.
*
* @return true if will execute after shutdown
* @see #setExecuteExistingDelayedTasksAfterShutdownPolicy
*/
public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy() {
return executeExistingDelayedTasksAfterShutdown;
}
/**
* Initiates an orderly shutdown in which previously submitted
* tasks are executed, but no new tasks will be accepted. If the
* <tt>ExecuteExistingDelayedTasksAfterShutdownPolicy</tt> has
* been set <tt>false</tt>, existing delayed tasks whose delays
* have not yet elapsed are cancelled. And unless the
* <tt>ContinueExistingPeriodicTasksAfterShutdownPolicy</tt> has
* been set <tt>true</tt>, future executions of existing periodic
* tasks will be cancelled.
*/
public void shutdown() {
cancelUnwantedTasks();
super.shutdown();
}
/**
* Attempts to stop all actively executing tasks, halts the
* processing of waiting tasks, and returns a list of the tasks
* that were awaiting execution.
*
* <p>There are no guarantees beyond best-effort attempts to stop
* processing actively executing tasks. This implementation
* cancels tasks via {@link Thread#interrupt}, so any task that
* fails to respond to interrupts may never terminate.
*
* @return list of tasks that never commenced execution. Each
* element of this list is a {@link ScheduledFuture},
* including those tasks submitted using <tt>execute</tt>, which
* are for scheduling purposes used as the basis of a zero-delay
* <tt>ScheduledFuture</tt>.
* @throws SecurityException {@inheritDoc}
*/
public List<Runnable> shutdownNow() {
return super.shutdownNow();
}
/**
* Returns the task queue used by this executor. Each element of
* this queue is a {@link ScheduledFuture}, including those
* tasks submitted using <tt>execute</tt> which are for scheduling
* purposes used as the basis of a zero-delay
* <tt>ScheduledFuture</tt>. Iteration over this queue is
* <em>not</em> guaranteed to traverse tasks in the order in
* which they will execute.
*
* @return the task queue
*/
public BlockingQueue<Runnable> getQueue() {
return super.getQueue();
}
/**
* An annoying wrapper class to convince javac to use a
* DelayQueue<RunnableScheduledFuture> as a BlockingQueue<Runnable>
*/
private static class DelayedWorkQueue
extends AbstractCollection<Runnable>
implements BlockingQueue<Runnable> {
private final DelayQueue<RunnableScheduledFuture> dq = new DelayQueue<RunnableScheduledFuture>();
public Runnable poll() { return dq.poll(); }
public Runnable peek() { return dq.peek(); }
public Runnable take() throws InterruptedException { return dq.take(); }
public Runnable poll(long timeout, TimeUnit unit) throws InterruptedException {
return dq.poll(timeout, unit);
}
public boolean add(Runnable x) {
return dq.add((RunnableScheduledFuture)x);
}
public boolean offer(Runnable x) {
return dq.offer((RunnableScheduledFuture)x);
}
public void put(Runnable x) {
dq.put((RunnableScheduledFuture)x);
}
public boolean offer(Runnable x, long timeout, TimeUnit unit) {
return dq.offer((RunnableScheduledFuture)x, timeout, unit);
}
public Runnable remove() { return dq.remove(); }
public Runnable element() { return dq.element(); }
public void clear() { dq.clear(); }
public int drainTo(Collection<? super Runnable> c) { return dq.drainTo(c); }
public int drainTo(Collection<? super Runnable> c, int maxElements) {
return dq.drainTo(c, maxElements);
}
public int remainingCapacity() { return dq.remainingCapacity(); }
public boolean remove(Object x) { return dq.remove(x); }
public boolean contains(Object x) { return dq.contains(x); }
public int size() { return dq.size(); }
public boolean isEmpty() { return dq.isEmpty(); }
public Object[] toArray() { return dq.toArray(); }
public <T> T[] toArray(T[] array) { return dq.toArray(array); }
public Iterator<Runnable> iterator() {
return new Iterator<Runnable>() {
private Iterator<RunnableScheduledFuture> it = dq.iterator();
public boolean hasNext() { return it.hasNext(); }
public Runnable next() { return it.next(); }
public void remove() { it.remove(); }
};
}
}
}